List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322446/publications.pdf Version: 2024-02-01

		1099	1980
362	47,469	112	206
papers	citations	h-index	g-index
071	071	071	100.00
371	371	371	40360
all docs	docs citations	times ranked	citing authors

VII CHEN

#	Article	IF	CITATIONS
1	Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 2010, 464, 104-107.	27.8	2,983
2	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
3	Use of Arsenic Trioxide (As2O3) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 1997, 89, 3354-3360.	1.4	1,316
4	A library of atomically thin metal chalcogenides. Nature, 2018, 556, 355-359.	27.8	1,225
5	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.	27.8	1,194
6	Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8, 357.	12.8	1,074
7	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society, 2017, 139, 16235-16247.	13.7	1,026
8	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Letters, 2017, 17, 384-391.	9.1	953
9	Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5722-5725.	13.7	899
10	Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 2015, 44, 2681-2701.	38.1	786
11	In Vivo Bioâ€Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 2013, 25, 3144-3176.	21.0	636
12	Nanoparticle-triggered <i>in situ</i> catalytic chemical reactions for tumour-specific therapy. Chemical Society Reviews, 2018, 47, 1938-1958.	38.1	616
13	Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS Nano, 2010, 4, 529-539.	14.6	615
14	Micro/Nanoparticleâ€Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016, 28, 8097-8129.	21.0	607
15	Core/Shell Structured Hollow Mesoporous Nanocapsules: A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery. ACS Nano, 2010, 4, 6001-6013.	14.6	592
16	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 1275-1284.	13.7	535
17	Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme atalyzed Cascade Reaction. Advanced Science, 2019, 6, 1801733.	11.2	454
18	Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano, 2018, 12, 3780-3795.	14.6	437

#	Article	IF	CITATIONS
19	The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 2010, 31, 1085-1092.	11.4	433
20	Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 2018, 30, 1703284.	21.0	422
21	Breakâ€up of Twoâ€Dimensional MnO ₂ Nanosheets Promotes Ultrasensitive pHâ€Triggered Theranostics of Cancer. Advanced Materials, 2014, 26, 7019-7026.	21.0	404
22	Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nature Communications, 2019, 10, 2025.	12.8	404
23	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	11.2	397
24	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
25	A Facile Oneâ€Pot Synthesis of a Twoâ€Dimensional MoS ₂ /Bi ₂ S ₃ Composite Theranostic Nanosystem for Multiâ€Modality Tumor Imaging and Therapy. Advanced Materials, 2015, 27, 2775-2782.	21.0	385
26	Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano, 2018, 12, 4545-4555.	14.6	361
27	Controlled Intracellular Release of Doxorubicin in Multidrug-Resistant Cancer Cells by Tuning the Shell-Pore Sizes of Mesoporous Silica Nanoparticles. ACS Nano, 2011, 5, 9788-9798.	14.6	353
28	Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano, 2017, 11, 12696-12712.	14.6	350
29	Nanocatalystsâ€Augmented and Photothermalâ€Enhanced Tumorâ€5pecific Sequential Nanocatalytic Therapy in Both NIRâ€I and NIRâ€II Biowindows. Advanced Materials, 2019, 31, e1805919.	21.0	347
30	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	13.7	338
31	Piezocatalytic Tumor Therapy by Ultrasoundâ€Triggered and BaTiO ₃ â€Mediated Piezoelectricity. Advanced Materials, 2020, 32, e2001976.	21.0	320
32	2D Ultrathin MXeneâ€Based Drugâ€Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Advanced Healthcare Materials, 2018, 7, e1701394.	7.6	316
33	Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 2015, 39, 206-217.	11.4	304
34	Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks. Advanced Materials, 2016, 28, 3235-3272.	21.0	291
35	High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nature Communications, 2017, 8, 394.	12.8	290
36	Construction of Homogenous/Heterogeneous Hollow Mesoporous Silica Nanostructures by Silica-Etching Chemistry: Principles, Synthesis, and Applications. Accounts of Chemical Research, 2014, 47, 125-137.	15.6	286

#	Article	IF	CITATIONS
37	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chemistry of Materials, 2017, 29, 8637-8652.	6.7	285
38	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	21.0	284
39	Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials, 2012, 33, 7126-7137.	11.4	278
40	Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells. Angewandte Chemie - International Edition, 2011, 50, 11644-11648.	13.8	275
41	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€ŧemplating Assembly and Nuclearâ€₹argeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	21.0	266
42	Singleâ€Atom Catalysts in Catalytic Biomedicine. Advanced Materials, 2020, 32, e1905994.	21.0	260
43	The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 2010, 131, 314-320.	4.4	257
44	Ultrasmall Fe ₃ O ₄ Nanoparticle/MoS ₂ Nanosheet Composites with Superior Performances for Lithium Ion Batteries. Small, 2014, 10, 1536-1543.	10.0	257
45	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. ACS Nano, 2017, 11, 9467-9480.	14.6	248
46	"Manganese Extraction―Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 2016, 138, 9881-9894.	13.7	246
47	Large Pore‣ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	21.0	245
48	Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials, 2019, 211, 1-13.	11.4	243
49	Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs. Advanced Functional Materials, 2011, 21, 270-278.	14.9	239
50	Injectable 2D MoS ₂ â€Integrated Drug Delivering Implant for Highly Efficient NIRâ€Triggered Synergistic Tumor Hyperthermia. Advanced Materials, 2015, 27, 7117-7122.	21.0	238
51	A Bifunctional Biomaterial with Photothermal Effect forÂTumor Therapy and Bone Regeneration. Advanced Functional Materials, 2016, 26, 1197-1208.	14.9	238
52	Enhanced Tumor-Specific Disulfiram Chemotherapy by <i>In Situ</i> Cu ²⁺ Chelation-Initiated Nontoxicity-to-Toxicity Transition. Journal of the American Chemical Society, 2019, 141, 11531-11539.	13.7	237
53	Exosome Biochemistry and Advanced Nanotechnology for Nextâ€Generation Theranostic Platforms. Advanced Materials, 2019, 31, e1802896.	21.0	234
54	Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano, 2019, 13, 2643-2653.	14.6	234

#	Article	IF	CITATIONS
55	<i>In vivo</i> continuousâ€wave optical breast imaging enhanced with Indocyanine Green. Medical Physics, 2003, 30, 1039-1047.	3.0	230
56	Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials, 2012, 33, 989-998.	11.4	230
57	Bioinspired Copper Singleâ€Atom Catalysts for Tumor Parallel Catalytic Therapy. Advanced Materials, 2020, 32, e2002246.	21.0	230
58	Ultrasound-Triggered Nitric Oxide Release Platform Based on Energy Transformation for Targeted Inhibition of Pancreatic Tumor. ACS Nano, 2016, 10, 10816-10828.	14.6	229
59	Gasâ€Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Advanced Materials, 2018, 30, e1801964.	21.0	225
60	Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials, 2019, 206, 101-114.	11.4	223
61	2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nature Communications, 2021, 12, 2203.	12.8	222
62	A Metalâ€Organic Framework (MOF) Fenton Nanoagentâ€Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Advanced Materials, 2020, 32, e1907152.	21.0	220
63	Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today, 2016, 11, 292-308.	11.9	210
64	Organelle-targeting metal complexes: From molecular design to bio-applications. Coordination Chemistry Reviews, 2019, 378, 66-86.	18.8	210
65	Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomaterialia, 2011, 7, 3496-3504.	8.3	209
66	Perfluorohexaneâ€Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU). Advanced Materials, 2012, 24, 785-791.	21.0	207
67	Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications. Advanced Materials, 2013, 25, 3100-3105.	21.0	205
68	Colloidal RBCâ€ S haped, Hydrophilic, and Hollow Mesoporous Carbon Nanocapsules for Highly Efficient Biomedical Engineering. Advanced Materials, 2014, 26, 4294-4301.	21.0	196
69	Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials, 2012, 33, 5854-5864.	11.4	185
70	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. Theranostics, 2018, 8, 1648-1664.	10.0	185
71	2D MXeneâ€Integrated 3Dâ€Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction. Advanced Science, 2020, 7, 1901511.	11.2	185
72	Ultrasmall Cu _{2â€<i>x</i>} S Nanodots for Highly Efficient Photoacoustic Imagingâ€Guided Photothermal Therapy. Small, 2015, 11, 2275-2283.	10.0	184

#	Article	IF	CITATIONS
73	Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Advanced Materials, 2018, 30, e1706981.	21.0	182
74	Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.	11.4	178
75	Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials, 2018, 155, 54-63.	11.4	169
76	Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. Journal of Materials Chemistry, 2011, 21, 3037.	6.7	167
77	Multifunctional Mesoporous Composite Nanocapsules for Highly Efficient MRIâ€Guided Highâ€Intensity Focused Ultrasound Cancer Surgery. Angewandte Chemie - International Edition, 2011, 50, 12505-12509.	13.8	166
78	Microbubbles from Gasâ€Generating Perfluorohexane Nanoemulsions for Targeted Temperatureâ€Sensitive Ultrasonography and Synergistic HIFU Ablation of Tumors. Advanced Materials, 2013, 25, 4123-4130.	21.0	160
79	Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. ACS Nano, 2019, 13, 6438-6454.	14.6	160
80	Tumor Microenvironmentâ€Enabled Nanotherapy. Advanced Healthcare Materials, 2018, 7, e1701156.	7.6	158
81	Therapeutic mesopore construction on 2D Nb ₂ C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8, 4491-4508.	10.0	158
82	Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4, 800-816.	12.2	155
83	Plasmonic and Catalytic AuPd Nanowheels for the Efficient Conversion of Light into Chemical Energy. Angewandte Chemie - International Edition, 2013, 52, 6063-6067.	13.8	152
84	Ultrathin Molybdenum Carbide MXene with Fast Biodegradability for Highly Efficient Theoryâ€Oriented Photonic Tumor Hyperthermia. Advanced Functional Materials, 2019, 29, 1901942.	14.9	150
85	N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.	10.3	145
86	Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163, 1-13.	11.4	144
87	A Uniform Subâ€50 nm‣ized Magnetic/Upconversion Fluorescent Bimodal Imaging Agent Capable of Generating Singlet Oxygen by Using a 980 nm Laser. Chemistry - A European Journal, 2012, 18, 7082-7090.	3.3	143
88	Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.	11.9	140
89	Inorganic Nanoparticle-Based Drug Codelivery Nanosystems To Overcome the Multidrug Resistance of Cancer Cells. Molecular Pharmaceutics, 2014, 11, 2495-2510.	4.6	139
90	Mitochondriaâ€Targeted Artificial "Nanoâ€RBCs―for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Advanced Science, 2018, 5, 1800049.	11.2	138

#	Article	IF	CITATIONS
91	Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Theranostics, 2018, 8, 1327-1339.	10.0	138
92	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	11.9	138
93	Structure-property relationships in manganese oxide - mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials, 2012, 33, 2388-2398.	11.4	135
94	Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 2013, 34, 2057-2068.	11.4	135
95	Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Materials Horizons, 2019, 6, 1057-1065.	12.2	135
96	Endogenous Catalytic Generation of O ₂ Bubbles for <i>In Situ</i> Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano, 2017, 11, 9093-9102.	14.6	133
97	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	11.7	132
98	Construction of Singleâ€Ironâ€Atom Nanocatalysts for Highly Efficient Catalytic Antibiotics. Small, 2019, 15, e1901834.	10.0	132
99	Synergistic Sonodynamic/Chemotherapeutic Suppression of Hepatocellular Carcinoma by Targeted Biodegradable Mesoporous Nanosonosensitizers. Advanced Functional Materials, 2018, 28, 1800145.	14.9	131
100	Photosynthetic Tumor Oxygenation by Photosensitizer ontaining Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 1906-1913.	13.8	131
101	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	38.1	129
102	Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery. Journal of Materials Chemistry, 2011, 21, 5290.	6.7	128
103	Engineering Inorganic Nanoemulsions/Nanoliposomes by Fluorideâ€Silica Chemistry for Efficient Delivery/Coâ€Delivery of Hydrophobic Agents. Advanced Functional Materials, 2012, 22, 1586-1597.	14.9	128
104	Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials, 2018, 161, 292-305.	11.4	127
105	Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. Nano Letters, 2019, 19, 2128-2137.	9.1	127
106	Perfluoropentane-Encapsulated Hollow Mesoporous Prussian Blue Nanocubes for Activated Ultrasound Imaging and Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2015, 7, 4579-4588.	8.0	126
107	Magnetic Hyperthermia–Synergistic H ₂ O ₂ Self‣ufficient Catalytic Suppression of Osteosarcoma with Enhanced Boneâ€Regeneration Bioactivity by 3Dâ€Printing Composite Scaffolds. Advanced Functional Materials, 2020, 30, 1907071.	14.9	126
108	The Coppery Age: Copper (Cu)â€Involved Nanotheranostics. Advanced Science, 2020, 7, 2001549.	11.2	126

#	Article	IF	CITATIONS
109	Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 2017, 142, 13-30.	11.4	120
110	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	31.8	119
111	Reversible Poreâ€Structure Evolution in Hollow Silica Nanocapsules: Large Pores for siRNA Delivery and Nanoparticle Collecting. Small, 2011, 7, 2935-2944.	10.0	117
112	Emerging Nanomedicineâ€Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Advanced Materials, 2021, 33, e2005062.	21.0	117
113	Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials, 2014, 35, 5148-5161.	11.4	116
114	Multifunctional Graphene Oxideâ€based Triple Stimuliâ€Responsive Nanotheranostics. Advanced Functional Materials, 2014, 24, 4386-4396.	14.9	115
115	Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine. ACS Nano, 2019, 13, 2223-2235.	14.6	115
116	Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials, 2017, 133, 219-228.	11.4	114
117	A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 2018, 11, 4149-4168.	10.4	112
118	Silicene: Wetâ€Chemical Exfoliation Synthesis and Biodegradable Tumor Nanomedicine. Advanced Materials, 2019, 31, e1903013.	21.0	112
119	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	21.0	112
120	Biodegradable 2D Fe–Al Hydroxide for Nanocatalytic Tumorâ€Ðynamic Therapy with Tumor Specificity. Advanced Science, 2018, 5, 1801155.	11.2	100
121	2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 3541-3548.	5.8	99
122	Engineering 2D Mesoporous Silica@MXeneâ€Integrated 3Dâ€Printing Scaffolds for Combinatory Osteosarcoma Therapy and NOâ€Augmented Bone Regeneration. Small, 2020, 16, e1906814.	10.0	98
123	Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale, 2016, 8, 4324-4339.	5.6	95
124	Manganeseâ€Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Advanced Functional Materials, 2020, 30, 1907066.	14.9	95
125	Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nature Communications, 2019, 10, 5380.	12.8	93
126	Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics, 2018, 8, 1591-1606.	10.0	88

#	Article	IF	CITATIONS
127	Self-assembled organic nanomedicine enables ultrastable photo-to-heat converting theranostics in the second near-infrared biowindow. Nature Communications, 2021, 12, 218.	12.8	88
128	Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials, 2014, 35, 8197-8205.	11.4	85
129	Tumorâ€5pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	13.8	85
130	Sonoâ€Controllable and ROSâ€Sensitive CRISPRâ€Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy. Advanced Materials, 2021, 33, e2104641.	21.0	85
131	Hyaluronic acid-conjugated mesoporous silica nanoparticles: excellent colloidal dispersity in physiological fluids and targeting efficacy. Journal of Materials Chemistry, 2012, 22, 5615.	6.7	83
132	Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon, 2014, 66, 547-559.	10.3	83
133	A facile synthesis of versatile Cu2â°'xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials, 2015, 57, 12-21.	11.4	83
134	Energy onverting Nanomedicine. Small, 2019, 15, e1805339.	10.0	82
135	Nb2C MXene-Functionalized Scaffolds Enables Osteosarcoma Phototherapy and Angiogenesis/Osteogenesis of Bone Defects. Nano-Micro Letters, 2021, 13, 30.	27.0	82
136	Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials, 2021, 275, 120979.	11.4	82
137	A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials, 2014, 35, 5875-5885.	11.4	80
138	In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 15428-15441.	8.0	80
139	Peptidomimetic inhibitors of APC–Asef interaction block colorectal cancer migration. Nature Chemical Biology, 2017, 13, 994-1001.	8.0	79
140	An Intelligent Nanotheranostic Agent for Targeting, Redoxâ€Responsive Ultrasound Imaging, and Imagingâ€Guided Highâ€Intensity Focused Ultrasound Synergistic Therapy. Small, 2014, 10, 1403-1411.	10.0	78
141	Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia, 2016, 30, 378-387.	8.3	78
142	Materials Chemistry of Nanoultrasonic Biomedicine. Advanced Materials, 2017, 29, 1604105.	21.0	76
143	Augmenting Tumorâ€6tarvation Therapy by Cancer Cell Autophagy Inhibition. Advanced Science, 2020, 7, 1902847.	11.2	76
144	Mitochondriaâ€specific nanocatalysts for chemotherapyâ€augmented sequential chemoreactive tumor therapy. Exploration, 2021, 1, 50-60.	11.0	76

#	Article	IF	CITATIONS
145	Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. Nano Letters, 2021, 21, 6764-6772.	9.1	75
146	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42917-42931.	8.0	74
147	Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 662-670.	6.3	74
148	Cocrystal Strategy toward Multifunctional 3Dâ€Printing Scaffolds Enables NIRâ€Activated Photonic Osteosarcoma Hyperthermia and Enhanced Bone Defect Regeneration. Advanced Functional Materials, 2020, 30, 1909938.	14.9	74
149	Injectable Smart Phaseâ€Transformation Implants for Highly Efficient In Vivo Magneticâ€Hyperthermia Regression of Tumors. Advanced Materials, 2014, 26, 7468-7473.	21.0	72
150	Focused Ultrasoundâ€Augmented Delivery of Biodegradable Multifunctional Nanoplatforms for Imagingâ€Guided Brain Tumor Treatment. Advanced Science, 2018, 5, 1700474.	11.2	71
151	Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Materials Horizons, 2020, 7, 317-337.	12.2	71
152	Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Medicine, 2021, 10, 257-268.	2.8	70
153	Engineering Singleâ€Atomic Ironâ€Catalystâ€Integrated 3Dâ€Printed Bioscaffolds for Osteosarcoma Destruction with Antibacterial and Bone Defect Regeneration Bioactivity. Advanced Materials, 2021, 33, e2100150.	21.0	70
154	Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 2022, 184, 114178.	13.7	69
155	Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. Journal of Materials Chemistry B, 2017, 5, 4579-4586.	5.8	68
156	Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pHâ€Responsive Theranostic Platform. Advanced Functional Materials, 2014, 24, 4273-4283.	14.9	66
157	Versatile pH-response Micelles with High Cell-Penetrating Helical Diblock Copolymers for Photoacoustic Imaging Guided Synergistic Chemo-Photothermal Therapy. Theranostics, 2016, 6, 2170-2182.	10.0	65
158	Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. Journal of Materials Chemistry, 2009, 19, 3395.	6.7	64
159	Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. Advanced Science, 2021, 8, 2000494.	11.2	64
160	A "Neckâ€Formation―Strategy for an Antiquenching Magnetic/Upconversion Fluorescent Bimodal Cancer Probe. Chemistry - A European Journal, 2010, 16, 11254-11260.	3.3	62
161	Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opinion on Drug Delivery, 2014, 11, 917-930.	5.0	62
162	Biomedical Applications of MXeneâ€Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Advanced Functional Materials, 2022, 32, .	14.9	62

#	Article	IF	CITATIONS
163	A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. Journal of Materials Chemistry B, 2015, 3, 766-775.	5.8	61
164	Largeâ€Area Atomic Layers of the Chargeâ€Đensityâ€Wave Conductor TiSe ₂ . Advanced Materials, 2018, 30, 1704382.	21.0	60
165	Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nature Communications, 2022, 13, .	12.8	60
166	Room-temperature catalytic removal of low-concentration NO over mesoporous Fe–Mn binary oxide synthesized using a template-free approach. Applied Catalysis B: Environmental, 2013, 140-141, 42-50.	20.2	59
167	Nanomedicineâ€Enabled Photonic Thermogaseous Cancer Therapy. Advanced Science, 2020, 7, 1901954.	11.2	59
168	Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today, 2021, 39, 101212.	11.9	59
169	Two-Dimensional MXene-Originated <i>In Situ</i> Nanosonosensitizer Generation for Augmented and Synergistic Sonodynamic Tumor Nanotherapy. ACS Nano, 2022, 16, 9938-9952.	14.6	59
170	Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. Journal of Materials Chemistry B, 2019, 7, 3599-3609.	5.8	58
171	Nanomedicine Enables Drug-Potency Activation with Tumor Sensitivity and Hyperthermia Synergy in the Second Near-Infrared Biowindow. ACS Nano, 2021, 15, 6457-6470.	14.6	58
172	Engineering Janus Chemoreactive Nanosonosensitizers for Bilaterally Augmented Sonodynamic and Chemodynamic Cancer Nanotherapy. Advanced Functional Materials, 2021, 31, 2103134.	14.9	58
173	Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. Nanoscale Horizons, 2019, 4, 415-425.	8.0	57
174	Composition–property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release. Nanoscale, 2015, 7, 7632-7643.	5.6	55
175	Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. Biomaterials, 2020, 256, 120206.	11.4	55
176	Mesoporous carbon biomaterials. Science China Materials, 2015, 58, 241-257.	6.3	54
177	Nanobiotechnology Promotes Noninvasive Highâ€Intensity Focused Ultrasound Cancer Surgery. Advanced Healthcare Materials, 2015, 4, 158-165.	7.6	54
178	Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials, 2019, 219, 119374.	11.4	54
179	CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy and Environment, 2022, 7, 394-410.	8.7	54
180	A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs. Journal of Materials Chemistry, 2012, 22, 12553.	6.7	53

#	Article	IF	CITATIONS
181	Combinatorial Photothermal 3Dâ€Printing Scaffold and Checkpoint Blockade Inhibits Growth/Metastasis of Breast Cancer to Bone and Accelerates Osteogenesis. Advanced Functional Materials, 2021, 31, 2006214.	14.9	53
182	Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach. Journal of Materials Chemistry, 2009, 19, 7614.	6.7	52
183	Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31, 937-946.	9.0	52
184	Construction of Silicaâ€Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700646.	7.6	51
185	Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials, 2021, 277, 121071.	11.4	51
186	Magnetic Hyperthermia Ablation of Tumors Using Injectable Fe ₃ O ₄ /Calcium Phosphate Cement. ACS Applied Materials & Interfaces, 2015, 7, 13866-13875.	8.0	50
187	Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catalysis Communications, 2016, 73, 98-102.	3.3	50
188	Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for inÂvivo cardiac repair. Biomaterials, 2016, 74, 188-199.	11.4	49
189	Dualâ€Mesoporous ZSMâ€5 Zeolite with Highly <i>b</i> â€Axisâ€Oriented Large Mesopore Channels for the Production of Benzoin Ethyl Ether. Chemistry - A European Journal, 2013, 19, 10017-10023.	3.3	48
190	Exogenous/Endogenousâ€īriggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	7.6	48
191	Silk Fibroin-Coated Nanoagents for Acidic Lysosome Targeting by a Functional Preservation Strategy in Cancer Chemotherapy. Theranostics, 2019, 9, 961-973.	10.0	48
192	A Subâ€50â€nm Monosized Superparamagnetic Fe ₃ O ₄ @SiO ₂ <i>T₂</i> â€Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Singleâ€Loaded Core–Shell Nanostructures. Chemistry - an Asian Journal, 2009, 4, 1809-1816.	3.3	47
193	Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. Nano Letters, 2020, 20, 6780-6790.	9.1	47
194	A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 2020, 12, 10265-10276.	5.6	47
195	A self-assembled carrier-free nanosonosensitizer for photoacoustic imaging-guided synergistic chemo–sonodynamic cancer therapy. Nanoscale, 2020, 12, 5587-5600.	5.6	46
196	Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today, 2019, 28, 100773.	11.9	45
197	Upconversion Nanoparticles Hybridized Cyanobacterial Cells for Nearâ€Infrared Mediated Photosynthesis and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2010196.	14.9	45
198	Template-free synthesis of mesoporous X–Mn (X = Co, Ni, Zn) bimetal oxides and catalytic application in the room temperature removal of low-concentration NO. Journal of Materials Chemistry A, 2013, 1, 10218.	10.3	44

#	Article	IF	CITATIONS
199	H2O2-responsive theranostic nanomedicine. Chinese Chemical Letters, 2017, 28, 1841-1850.	9.0	44
200	Sequential Ultrasound-Triggered and Hypoxia-Sensitive Nanoprodrug for Cascade Amplification of Sonochemotherapy. ACS Nano, 2022, 16, 5439-5453.	14.6	44
201	Ultrasound-Controlled CRISPR/Cas9 System Augments Sonodynamic Therapy of Hepatocellular Carcinoma. ACS Central Science, 2021, 7, 2049-2062.	11.3	44
202	Ultrasoundâ€Augmented Nanocatalytic Ferroptosis Reverses Chemotherapeutic Resistance and Induces Synergistic Tumor Nanotherapy. Advanced Functional Materials, 2022, 32, 2107529.	14.9	43
203	Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. RSC Advances, 2014, 4, 17950.	3.6	42
204	Sequential catalytic nanomedicine augments synergistic chemodrug and chemodynamic cancer therapy. Nanoscale Horizons, 2019, 4, 890-901.	8.0	42
205	Engineering Electronic Band Structure of Binary Thermoelectric Nanocatalysts for Augmented Pyrocatalytic Tumor Nanotherapy. Advanced Materials, 2022, 34, e2106773.	21.0	42
206	Starvation therapy enabled "switch-on―NIR-II photothermal nanoagent for synergistic in situ photothermal immunotherapy. Nano Today, 2022, 44, 101461.	11.9	42
207	Magnesiumâ€Engineered Silica Framework for pHâ€Accelerated Biodegradation and DNAzymeâ€Triggered Chemotherapy. Small, 2018, 14, e1800708.	10.0	41
208	Tyrosinase-activated prodrug nanomedicine as oxidative stress amplifier for melanoma-specific treatment. Biomaterials, 2020, 259, 120329.	11.4	41
209	Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Advanced Intelligent Systems, 2021, 3, 2000267.	6.1	41
210	An emulsification–solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery. Journal of Materials Science, 2012, 47, 2256-2263.	3.7	40
211	Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine. Advanced Functional Materials, 2021, 31, 2005093.	14.9	40
212	Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor‧pecific Nanomedicine. Advanced Science, 2018, 5, 1801175.	11.2	39
213	Tumor-responsive copper-activated disulfiram for synergetic nanocatalytic tumor therapy. Nano Research, 2021, 14, 205-211.	10.4	39
214	Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Accounts of Materials Research, 2022, 3, 785-798.	11.7	38
215	Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. Journal of Materials Chemistry B, 2017, 5, 6451-6470.	5.8	37
216	Phase-changeable and bubble-releasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. Journal of Materials Chemistry B, 2016, 4, 7368-7378.	5.8	36

#	Article	IF	CITATIONS
217	Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials, 2021, 269, 120455.	11.4	36
218	Biodegradable and Excretable 2D W _{1.33} C <i>i</i> â€MXene with Vacancy Ordering for Theoryâ€Oriented Cancer Nanotheranostics in Nearâ€Infrared Biowindow. Advanced Science, 2021, 8, e2101043.	11.2	36
219	Advanced Theragenerative Biomaterials with Therapeutic and Regeneration Multifunctionality. Advanced Functional Materials, 2020, 30, 2002621.	14.9	35
220	Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today, 2020, 32, 100854.	11.9	35
221	Biodegradable cascade nanocatalysts enable tumor-microenvironment remodeling for controllable CO release and targeted/synergistic cancer nanotherapy. Biomaterials, 2021, 276, 121001.	11.4	35
222	Theranostic nanosensitizers for highly efficient <scp>MR</scp> /fluorescence imagingâ€guided sonodynamic therapy of gliomas. Journal of Cellular and Molecular Medicine, 2018, 22, 5394-5405.	3.6	34
223	Dual-targeting and excretable ultrasmall SPIONs for <i>T</i> ₁ -weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. Journal of Materials Chemistry B, 2020, 8, 2296-2306.	5.8	34
224	Ultrathin 2D Inorganic Ancient Pigment Decorated 3Dâ€Printing Scaffold Enables Photonic Hyperthermia of Osteosarcoma in NIRâ€I Biowindow and Concurrently Augments Bone Regeneration. Advanced Science, 2021, 8, e2101739.	11.2	34
225	Phase-Transition Nanodroplets for Real-Time Photoacoustic/Ultrasound Dual-Modality Imaging and Photothermal Therapy of Sentinel Lymph Node in Breast Cancer. Scientific Reports, 2017, 7, 45213.	3.3	33
226	Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horizons, 2020, 5, 857-868.	8.0	33
227	A facile one-pot synthesis of hierarchically porous Cu(I)-ZSM-5 for radicals-involved oxidation of cyclohexane. Applied Catalysis A: General, 2013, 451, 112-119.	4.3	32
228	Antimony Nanopolyhedrons with Tunable Localized Surface Plasmon Resonances for Highly Effective Photoacousticâ€Imagingâ€Guided Synergistic Photothermal/Immunotherapy. Advanced Materials, 2021, 33, e2100039.	21.0	32
229	Multi-enzymatic activities of ultrasmall ruthenium oxide for anti-inflammation and neuroprotection. Chemical Engineering Journal, 2021, 411, 128543.	12.7	32
230	Photosynthetic Oxygenationâ€Augmented Sonodynamic Nanotherapy of Hypoxic Tumors. Advanced Healthcare Materials, 2022, 11, e2102135.	7.6	32
231	Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism. Journal of Materials Chemistry, 2009, 19, 6498.	6.7	30
232	Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Materials, 2016, 8, e313-e313.	7.9	30
233	Nucleus-targeting ultrasmall ruthenium(<scp>iv</scp>) oxide nanoparticles for photoacoustic imaging and low-temperature photothermal therapy in the NIR-II window. Chemical Communications, 2020, 56, 3019-3022.	4.1	30
234	Engineering Ultrasmall Ferroptosisâ€Targeting and Reactive Oxygen/Nitrogen Speciesâ€Scavenging Nanozyme for Alleviating Acute Kidney Injury. Advanced Functional Materials, 2022, 32, 2109221.	14.9	30

#	Article	IF	CITATIONS
235	Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy. Biomaterials, 2022, 287, 121668.	11.4	30
236	Hollow mesoporous zeolite microspheres: Hierarchical macro-/meso-/microporous structure and exceptionally enhanced adsorption properties. Dalton Transactions, 2011, 40, 12667.	3.3	28
237	Synthesis and catalytic activity of mesostructured KF/CaxAl2O(x+3) for the transesterification reaction to produce biodiesel. RSC Advances, 2012, 2, 12337.	3.6	28
238	Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance. Biomaterials, 2016, 106, 264-275.	11.4	28
239	Construction of Nucleusâ€Targeting Iridium Nanocrystals for Photonic Hyperthermiaâ€Synergized Cancer Radiotherapy. Small, 2019, 15, e1903254.	10.0	28
240	Autophagy blockade synergistically enhances nanosonosensitizer-enabled sonodynamic cancer nanotherapeutics. Journal of Nanobiotechnology, 2021, 19, 112.	9.1	28
241	Progress on the Multifunctional Mesoporous Silica-based Nanotheranostics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1-11.	1.3	28
242	Engineering defected 2D Pd/H-TiO2 nanosonosensitizers for hypoxia alleviation and enhanced sono-chemodynamic cancer nanotherapy. Journal of Nanobiotechnology, 2022, 20, 186.	9.1	28
243	Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	27
244	Coordinationâ€Accelerated "lron Extraction―Enables Fast Biodegradation of Mesoporous Silicaâ€Based Hollow Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700720.	7.6	27
245	Oxygenâ€Independent Photocleavage of Radical Nanogenerator for Nearâ€IRâ€Gated and H ₂ Oâ€Mediated Freeâ€Radical Nanotherapy. Advanced Materials, 2021, 33, e2100129.	21.0	27
246	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
247	Phase-transitional Fe ₃ O ₄ /perfluorohexane Microspheres for Magnetic Droplet Vaporization. Theranostics, 2017, 7, 846-854.	10.0	26
248	"Stepwise Extraction―strategy-based injectable bioresponsive composite implant for cancer theranostics. Biomaterials, 2018, 166, 38-51.	11.4	26
249	Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Science Bulletin, 2021, 66, 464-477.	9.0	26
250	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Destructive Stresses and Enables Rapid Sterilization. Angewandte Chemie - International Edition, 2021, 60, 7744-7751.	13.8	26
251	Ocular Nanomedicine. Advanced Science, 2022, 9, e2003699.	11.2	26
252	Synthesis of a Multinanoparticle-Embedded Core/Mesoporous Silica Shell Structure As a Durable Heterogeneous Catalyst. Langmuir, 2012, 28, 4920-4925.	3.5	25

#	Article	IF	CITATIONS
253	Ultrasmall Ag ₂ Te Quantum Dots with Rapid Clearance for Amplified Computed Tomography Imaging and Augmented Photonic Tumor Hyperthermia. ACS Applied Materials & Interfaces, 2020, 12, 42558-42566.	8.0	25
254	CRISPR/Cas9â€2D Silicene Geneâ€Editing Nanosystem for Remote NIRâ€IIâ€Induced Tumor Microenvironment Reprogramming and Augmented Photonic Tumor Ablation. Advanced Functional Materials, 2021, 31, 2107093.	14.9	25
255	Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta. Applied Catalysis B: Environmental, 2014, 152-153, 271-279.	20.2	24
256	Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications. Chemical Communications, 2014, 50, 15772-15775.	4.1	24
257	The electrocatalytic performance of carbon ball supported RhCo alloy nanocrystals for the methanol oxidation reaction in alkaline media. Journal of Power Sources, 2017, 371, 129-135.	7.8	24
258	Polymer–Upconverting Nanoparticle Hybrid Micelles for Enhanced Synergistic Chemo–Photodynamic Therapy: Effects of Emission–Absorption Spectral Match. Biomacromolecules, 2019, 20, 4044-4052.	5.4	24
259	A Cu/Mn co-loaded mesoporous ZrO2–TiO2 composite and its CO catalytic oxidation property. Microporous and Mesoporous Materials, 2013, 173, 112-120.	4.4	23
260	Biodegradable and biocompatible monodispersed hollow mesoporous organosilica with large pores for delivering biomacromolecules. Journal of Materials Chemistry B, 2017, 5, 8013-8025.	5.8	23
261	Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal, 2020, 379, 122251.	12.7	23
262	NIRâ€Lightâ€Activated Ratiometric Fluorescent Hybrid Micelles for High Spatiotemporally Controlled Biological Imaging and Chemotherapy. Small, 2020, 16, e2005667.	10.0	23
263	Degradable and Excretable Ultrasmall Transition Metal Selenide Nanodots for Highâ€Performance Computed Tomography Bioimagingâ€Guided Photonic Tumor Nanomedicine in NIRâ€II Biowindow. Advanced Functional Materials, 2021, 31, 2008591.	14.9	23
264	2D Core/Shellâ€Structured Mesoporous Silicene@Silica for Targeted and Synergistic NIRâ€Iâ€Induced Photothermal Ablation and Hypoxiaâ€Activated Chemotherapy of Tumors. Advanced Functional Materials, 2021, 31, 2102043.	14.9	23
265	Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy. Bioactive Materials, 2022, 10, 131-144.	15.6	23
266	Triggered-release drug delivery nanosystems for cancer therapy by intravenous injection: where are we now?. Expert Opinion on Drug Delivery, 2016, 13, 1195-1198.	5.0	22
267	Construction of Pepstatin A-Conjugated ultrasmall SPIONs for targeted positive MR imaging of epilepsy-overexpressed P-glycoprotein. Biomaterials, 2020, 230, 119581.	11.4	22
268	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	5.3	22
269	Lithium silicate-based bioceramics promoting chondrocyte maturation by immunomodulating M2 macrophage polarization. Biomaterials Science, 2020, 8, 4521-4534.	5.4	22
270	Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies. Biomedical Materials (Bristol), 2021, 16, 032006.	3.3	22

#	Article	IF	CITATIONS
271	High-efficiency water purification for methyl orange and lead(II) by eco-friendly magnetic sulfur-doped graphene-like carbon-supported layered double oxide. Journal of Hazardous Materials, 2021, 419, 126406.	12.4	22
272	Engineering 2D Cu-composed metal–organic framework nanosheets for augmented nanocatalytic tumor therapy. Journal of Nanobiotechnology, 2022, 20, 66.	9.1	22
273	Facile Synthesis of Nanoporous Hydroquinone/Catechol Formaldehyde Resins and their Highly Selective, Efficient and Regenerate Reactive Adsorption for Gold Ions. Macromolecular Chemistry and Physics, 2010, 211, 845-853.	2.2	21
274	One-pot synthesis of M (M = Ag, Au)@SiO ₂ yolk–shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis. Dalton Transactions, 2015, 44, 8867-8875.	3.3	21
275	Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials, 2020, 255, 120181.	11.4	21
276	Molecular insights into MXene destructing the cell membrane as a "nano thermal blade― Physical Chemistry Chemical Physics, 2021, 23, 3341-3350.	2.8	21
277	Twoâ€Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ€Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226.	21.0	21
278	Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chemical Engineering Journal, 2022, 440, 135810.	12.7	21
279	LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioactive Materials, 2022, 16, 120-133.	15.6	21
280	KF-loaded mesoporous Mg–Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production. Chemical Communications, 2013, 49, 8006.	4.1	20
281	Multifunctional Mesoporous Silica Nanoprobes: Material Chemistry–Based Fabrication and Bioâ€Imaging Functionality. Advanced Therapeutics, 2018, 1, 1800078.	3.2	20
282	Photosynthetic Tumor Oxygenation by Photosensitizerâ€Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 1922-1929.	2.0	20
283	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. Nanoscale, 2020, 12, 17931-17946.	5.6	20
284	Photosynthetic oxygen-self-generated 3D-printing microbial scaffold enhances osteosarcoma elimination and prompts bone regeneration. Nano Today, 2021, 41, 101297.	11.9	20
285	Facile synthesis of liposome/Cu2â^'x S-based nanocomposite for multimodal imaging and photothermal therapy. Science China Materials, 2015, 58, 294-301.	6.3	19
286	Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Research, 2017, 10, 3790-3810.	10.4	19
287	Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process. Nanoscale, 2015, 7, 16442-16450.	5.6	18
288	Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. Journal of Materials Chemistry B, 2020, 8, 9084-9093.	5.8	18

#	Article	IF	CITATIONS
289	Chemoreactive nanomedicine. Journal of Materials Chemistry B, 2020, 8, 6753-6764.	5.8	18
290	Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. Journal of Nanobiotechnology, 2021, 19, 290.	9.1	18
291	Local delivery and controlled release of miR-34a loaded in hydroxyapatite/mesoporous organosilica nanoparticles composite-coated implant wire to accelerate bone fracture healing. Biomaterials, 2022, 280, 121300.	11.4	18
292	Tailoring Chemoimmunostimulant Bioscaffolds for Inhibiting Tumor Growth and Metastasis after Incomplete Microwave Ablation. ACS Nano, 2021, 15, 20414-20429.	14.6	18
293	Oxygenâ€Independent Sulfate Radical for Stimuliâ€Responsive Tumor Nanotherapy. Advanced Science, 2022, 9, e2200974.	11.2	18
294	Fabrication of thermally stable and active bimetallic Au–Ag nanoparticles stabilized on inner wall of mesoporous silica shell. Dalton Transactions, 2013, 42, 13940.	3.3	17
295	Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 2018, 61, 1243-1260.	8.2	17
296	Extracellular-vesicles delivered tumor-specific sequential nanocatalysts can be used for MRI-informed nanocatalytic Therapy of hepatocellular carcinoma. Theranostics, 2021, 11, 64-78.	10.0	17
297	Autophagy-Dependent Apoptosis Induced by Apoferritin–Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS Applied Materials & Interfaces, 2021, 13, 38959-38968.	8.0	17
298	Biomimetic nanomedicine toward personalized disease theranostics. Nano Research, 2021, 14, 2491-2511.	10.4	17
299	Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics. Nature Communications, 2022, 13, 539.	12.8	17
300	Chitosan-Gated Fluorescent Mesoporous Silica Nanocarriers for the Real-Time Monitoring of Drug Release. Langmuir, 2020, 36, 6749-6756.	3.5	16
301	2D antimonene-integrated composite nanomedicine for augmented low-temperature photonic tumor hyperthermia by reversing cell thermoresistance. Bioactive Materials, 2022, 10, 295-305.	15.6	16
302	<i>In situ</i> phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. Journal of Materials Chemistry B, 2020, 8, 5257-5266.	5.8	16
303	Two-dimensional persistent luminescence "optical battery―for autophagy inhibition-augmented photodynamic tumor nanotherapy. Nano Today, 2022, 42, 101362.	11.9	16
304	Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive <i>T</i> ₁ and <i>T</i> ₂ MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow. Biomaterials Science, 2022, 10, 1562-1574.	5.4	16
305	Poly(Lactide-Co-Glycolide) Ultrasonographic Microbubbles Carrying Sudan Black for Preoperative and Intraoperative Localization of Lymph Nodes. Clinical Breast Cancer, 2012, 12, 199-206.	2.4	15
306	Construction of 2D Antimony(III) Selenide Nanosheets for Highly Efficient Photonic Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 19712-19723.	8.0	15

#	Article	IF	CITATIONS
307	Ultrasound/Acidityâ€Triggered and Nanoparticleâ€Enabled Analgesia. Advanced Healthcare Materials, 2019, 8, e1801350.	7.6	15
308	Engineering Oxygenâ€Irrelevant Radical Nanogenerator for Hypoxiaâ€Independent Magnetothermodynamic Tumor Nanotherapy. Small Methods, 2021, 5, e2001087.	8.6	15
309	Nanoprotection Against Retinal Pigment Epithelium Degeneration via Ferroptosis Inhibition. Small Methods, 2021, 5, e2100848.	8.6	15
310	Facile one-pot synthesis and drug storage/release properties of hollow micro/mesoporous organosilica nanospheres. Materials Letters, 2009, 63, 1943-1945.	2.6	14
311	Multifunctional cascade nanocatalysts for NIR-II-synergized photonic hyperthermia-strengthened nanocatalytic therapy of epithelial and embryonal tumors. Chemical Engineering Journal, 2021, 411, 128364.	12.7	14
312	Engineering ROSâ€Responsive Bioscaffolds for Disrupting Myeloid Cellâ€Driven Immunosuppressive Niche to Enhance PDâ€L1 Blockadeâ€Based Postablative Immunotherapy. Advanced Science, 2022, 9, e2104619.	11.2	14
313	Preparation and Unique Electrical Behaviors of Monodispersed Hybrid Nanorattles of Metal Nanocores with Hairy Electroactive Polymer Shells. Chemistry - A European Journal, 2014, 20, 2723-2731.	3.3	13
314	Sodium carbonate-assisted synthesis of hierarchically porous single-crystalline nanosized zeolites. Science Bulletin, 2017, 62, 1018-1024.	9.0	13
315	Surface Oxidation Modulates the Interfacial and Lateral Thermal Migration of MXene (Ti3C2Tx) Flakes. Journal of Physical Chemistry Letters, 2020, 11, 9521-9527.	4.6	13
316	Tumorâ€Specific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie, 2020, 132, 9780-9788.	2.0	13
317	Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Singleâ€Drugâ€Based Nanosensitizer under Dualâ€Activation. Advanced Functional Materials, 2021, 31, 2104473.	14.9	13
318	Two-dimensional semiconductor heterojunction nanostructure for mutually synergistic sonodynamic and chemoreactive cancer nanotherapy. Chemical Engineering Journal, 2022, 431, 134017.	12.7	13
319	Oxygen-evolving photosynthetic cyanobacteria for 2D bismuthene radiosensitizer-enhanced cancer radiotherapy. Bioactive Materials, 2022, 17, 276-288.	15.6	13
320	Facile one-pot synthesis of nanoporous hypercrosslinked hydroxybenzene formaldehyde resins with high surface area and adjustable pore texture. Microporous and Mesoporous Materials, 2010, 131, 141-147.	4.4	12
321	A 3D hierarchical assembly of optimized heterogeneous carbon nanosheets for highly efficient electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11625-11629.	10.3	12
322	In Vivo Targeted Cancer Theranostics by Core/Shellâ€Structured Multifunctional Prussian Blue/PLGA "Nanococktails― Particle and Particle Systems Characterization, 2018, 35, 1700306.	2.3	12
323	Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 652.	4.1	12
324	NIR -I and NIR-II irradiation tumor ablation using NbS2 nanosheets as the photothermal agent. Nanoscale, 2021, 13, 18300-18310.	5.6	12

#	Article	IF	CITATIONS
325	Cascade-activatable NO release based on GSH-detonated "nanobomb―for multi-pathways cancer therapy. Materials Today Bio, 2022, 14, 100288.	5.5	12
326	Unconventional Pd nanoparticles' growth induced by a competitive effect between temperature-dependent coordination and reduction of grafted amino ligands for Heck reaction. Journal of Materials Chemistry A, 2014, 2, 1515-1523.	10.3	11
327	Detection of nanocarrier potentiation on drug induced phospholipidosis in cultured cells and primary hepatocyte spheroids by high content imaging and analysis. Toxicology and Applied Pharmacology, 2018, 348, 54-66.	2.8	11
328	Selfâ€Assembled/Drugâ€Composed Nanomedicine for Synergistic Photonic Hyperthermia and Targeted Therapy of Breast Cancer by Inhibiting ERK, AKT, and STAT3 Signaling Cascades. Advanced Functional Materials, 2020, 30, 1908907.	14.9	11
329	Energy onverting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1663.	6.1	11
330	Engineering 2D Arsenicâ€Phosphorus Theranostic Nanosheets. Advanced Functional Materials, 2021, 31, 2101660.	14.9	11
331	PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 46343-46352.	8.0	11
332	Low Pt‣oaded Mesoporous Sodium Germanate as a Highâ€Performance Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 2016, 9, 2337-2342.	6.8	10
333	Nanomedicine-Augmented Cancer-Localized Treatment by 3D Theranostic Implants. Journal of Biomedical Nanotechnology, 2017, 13, 871-890.	1.1	10
334	An artificially engineered "tumor bio-magnet―for collecting blood-circulating nanoparticles and magnetic hyperthermia. Biomaterials Science, 2019, 7, 1815-1824.	5.4	10
335	Microalgae-enabled photosynthetic alleviation of tumor hypoxia for enhanced nanotherapies. Science Bulletin, 2020, 65, 1869-1871.	9.0	10
336	Virusâ€Inspired Deformable Mesoporous Nanocomposites for High Efficiency Drug Delivery. Small, 2020, 16, 1906028.	10.0	10
337	A dual enzyme-mimicking radical generator for enhanced photodynamic therapy <i>via</i> series–parallel catalysis. Nanoscale, 2021, 13, 17386-17395.	5.6	10
338	Synergetic Lipid Extraction with Oxidative Damage Amplifies Cellâ€Membraneâ€Đestructive Stresses and Enables Rapid Sterilization. Angewandte Chemie, 2021, 133, 7823-7830.	2.0	10
339	Nanobiomimetic Medicine. Advanced Functional Materials, 2022, 32, .	14.9	10
340	Magnetic Hollow Mesoporous Silica Nanospheres: Facile Fabrication and Ultrafast Immobilization of Enzymes. Journal of Nanoscience and Nanotechnology, 2011, 11, 10844-10848.	0.9	9
341	Engineering of Hollow Mesoporous Nanoparticles for Biomedical Applications. Advanced Porous Materials, 2013, 1, 34-62.	0.3	9
342	Engineering Chemotherapeutic-Augmented Calcium Phosphate Nanoparticles for Treatment of Intraperitoneal Disseminated Ovarian Cancer. ACS Applied Materials & Interfaces, 2022, 14, 21954-21965.	8.0	9

#	Article	IF	CITATIONS
343	Oxygen Pathology and Oxygen-Functional Materials for Therapeutics. Matter, 2020, 2, 1115-1147.	10.0	8
344	MoS ₂ nanosheets chemically modified with metal phthalocyanine <i>via</i> mussel-inspired chemistry for multifunctional memristive devices. Journal of Materials Chemistry C, 2021, 9, 6930-6936.	5.5	8
345	Engineering 2D Siliceneâ€Based Mesoporous Nanomedicine for In Vivo Nearâ€Infraredâ€Triggered Analgesia. Advanced Science, 2022, 9, .	11.2	8
346	A dual mode nanophotonics concept for in situ activation of brain immune cells using a photoswitchable yolk-shell upconversion nanoformulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102279.	3.3	7
347	FePS ₃ Nanosheets: Preparation and Potential in Photothermal-photodynamic Therapy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1074.	1.3	7
348	Nanoparticles: Large Poreâ€5ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 2087-2087.	21.0	6
349	Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. Nanoscale, 2022, 14, 6171-6183.	5.6	6
350	Synthesis of Hollow Mesoporous Silica Nanoparticles by Silica-Etching Chemistry for Biomedical Applications. Springer Theses, 2016, , 31-46.	0.1	5
351	Mesostructured Platinumâ€Free Anode and Carbonâ€Free Cathode Catalysts for Durable Proton Exchange Membrane Fuel Cells. ChemSusChem, 2014, 7, 135-145.	6.8	4
352	Multifunctional Composite Nanosystems for Precise/Enhanced Sonodynamic Oxidative Tumor Treatment. Bioconjugate Chemistry, 2022, 33, 1035-1048.	3.6	4
353	Silica nanoparticles boost plant resistance against pathogens. Science Bulletin, 2021, 66, 1151-1153.	9.0	3
354	Hard-templated engineering of versatile 2D amorphous metal oxide nanosheets. Nanotechnology, 2022, 33, 245602.	2.6	3
355	2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromolecular Rapid Communications, 2022, 43, e2200250.	3.9	3
356	Nanoparticles: Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications (Adv. Mater. 22/2013). Advanced Materials, 2013, 25, 3136-3136.	21.0	2
357	Multifunctional Hollow Mesoporous Silica Nanoparticles for MR/US Imaging-Guided Tumor Therapy. Springer Series in Biomaterials Science and Engineering, 2016, , 189-222.	1.0	2
358	Third-Order Optical Nonlinearity of Cadmium Sulfide Nanoparticles Loaded in Mesostructured Silica Materials. Journal of Nanoscience and Nanotechnology, 2011, 11, 10880-10885.	0.9	1
359	Third-order optical nonlinearity of cadmium sulfide nanoparticles loaded in mesostructured silica materials. , 2010, , .		0
360	Multifunctional Mesoporous Silica Nanoparticles for Theranostics of Cancer. Springer Theses, 2016, , 47-64.	0.1	0

#	Article	IF	CITATIONS
361	Research Background. Springer Theses, 2016, , 1-30.	0.1	0
362	Hollow Mesoporous Silica Nanoparticles for Ultrasound-Based Cancer Diagnosis and Therapy. Springer Theses, 2016, , 65-83.	0.1	0