Dan Knights

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321948/publications.pdf

Version: 2024-02-01

		26630	3	32842
100	84,824	56		100
papers	citations	h-index		g-index
110	110	110		74504
110	110	110		74584
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Medicine, 2022, 14, 29.	8.2	46
2	Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME Communications, 2022, 2 , .	4.2	13
3	Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host and Microbe, 2022, 30, 696-711.e5.	11.0	63
4	Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome, 2022, 10, 77.	11.1	31
5	Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nature Microbiology, 2022, 7, 780-795.	13.3	57
6	Shotgun sequencing of the faecal microbiome to predict response to steroids in patients with lower gastrointestinal acute graftâ€ <i>versus</i> host disease: An exploratory analysis. British Journal of Haematology, 2021, 192, e69-e73.	2.5	3
7	Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain. Gastroenterology, 2021, 160, 158-173.e10.	1.3	95
8	Placentas delivered by preâ€pregnant obese women have reduced abundance and diversity in the microbiome. FASEB Journal, 2021, 35, e21524.	0.5	14
9	Whole Wheat and Bran Cereal Affects Microbiome Stability. Current Developments in Nutrition, 2021, 5, 1162.	0.3	2
10	Saliva Testing Is Accurate for Early-Stage and Presymptomatic COVID-19. Microbiology Spectrum, 2021, 9, e0008621.	3.0	11
11	Multi-Omics Analyses Show Disease, Diet, and Transcriptome Interactions With the Virome. Gastroenterology, 2021, 161, 1194-1207.e8.	1.3	28
12	Nutrition As a Predictor of Microbiome Injury in Allo-HCT. Blood, 2021, 138, 746-746.	1.4	0
13	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	30.7	170
14	US Immigration Is Associated With Rapid and Persistent Acquisition of Antibiotic Resistance Genes in the Gut. Clinical Infectious Diseases, 2020, 71, 419-421.	5.8	10
15	Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell, 2020, 182, 1460-1473.e17.	28.9	217
16	A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. Cell Reports Medicine, 2020, 1, 100124.	6.5	24
17	Metagenomic Information Recovery from Human Stool Samples Is Influenced by Sequencing Depth and Profiling Method. Genes, 2020, 11, 1380.	2.4	11
18	Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Science Translational Medicine, 2020, 12, .	12.4	29

#	Article	IF	CITATIONS
19	Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome, 2020, 8, 118.	11.1	81
20	Sex Bias in Gut Microbiome Transmission in Newly Paired Marmosets (Callithrix jacchus). MSystems, 2020, 5, .	3.8	26
21	SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics, 2020, 36, 4088-4090.	4.1	42
22	Wild primate microbiomes prevent weight gain in germ-free mice. Animal Microbiome, 2020, 2, 16.	3.8	7
23	A Guide to Diet-Microbiome Study Design. Frontiers in Nutrition, 2020, 7, 79.	3.7	78
24	Early E. casseliflavus gut colonization and outcomes of allogeneic hematopoietic cell transplantation. PLoS ONE, 2019, 14, e0220850.	2.5	4
25	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	17.5	11,167
26	Antibiotics and Host-Tailored Probiotics Similarly Modulate Effects on the Developing Avian Microbiome, Mycobiome, and Host Gene Expression. MBio, 2019, 10, .	4.1	33
27	Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host and Microbe, 2019, 25, 789-802.e5.	11.0	441
28	Bacterial community structure and function distinguish gut sites in captive redâ€shanked doucs (Pygathrix nemaeus). American Journal of Primatology, 2019, 81, e22977.	1.7	9
29	Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. GigaScience, 2019, 8, .	6.4	54
30	Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nature Communications, 2019, 10, 2012.	12.8	168
31	Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genetics, 2019, 15, e1008018.	3.5	35
32	Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications, 2019, 10, 5477.	12.8	197
33	An Increased Abundance of Clostridiaceae Characterizes Arthritis in Inflammatory Bowel Disease and Rheumatoid Arthritis: A Cross-sectional Study. Inflammatory Bowel Diseases, 2019, 25, 902-913.	1.9	72
34	Obesity-Induced Microbiome Alterations Result in Severe Gastrointestinal Graft-Versus-Host Disease Following Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2019, 134, 1922-1922.	1.4	0
35	Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Scientific Reports, 2018, 8, 6219.	3.3	99
36	Pretransplant Gut Colonization with Intrinsically Vancomycin-Resistant Enterococci (E. gallinarum) Tj ETQq0 0 0 Blood and Marrow Transplantation, 2018, 24, 1260-1263.	rgBT /Ove 2.0	rlock 10 Tf 50 15

Blood and Marrow Transplantation, 2018, 24, 1260-1263.

#	Article	IF	CITATIONS
37	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
38	Development of the Human Mycobiome over the First Month of Life and across Body Sites. MSystems, 2018, 3, .	3.8	132
39	Functional Genomics of Host–Microbiome Interactions in Humans. Trends in Genetics, 2018, 34, 30-40.	6.7	73
40	Evaluating the Information Content of Shallow Shotgun Metagenomics. MSystems, 2018, 3, .	3.8	293
41	SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control. MSystems, 2018, 3, .	3.8	66
42	High-Throughput flaA Short Variable Region Sequencing to Assess Campylobacter Diversity in Fecal Samples From Birds. Frontiers in Microbiology, 2018, 9, 2201.	3.5	8
43	Urinary microbiome associated with chronic allograft dysfunction in kidney transplant recipients. Clinical Transplantation, 2018, 32, e13436.	1.6	24
44	US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	28.9	511
45	American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3, .	3.8	604
46	Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model. Scientific Reports, 2018, 8, 11159.	3.3	60
47	SplinectomeR Enables Group Comparisons in Longitudinal Microbiome Studies. Frontiers in Microbiology, 2018, 9, 785.	3.5	48
48	CLOUD: a non-parametric detection test for microbiome outliers. Microbiome, 2018, 6, 137.	11.1	16
49	The gut microbiome of nonhuman primates: Lessons in ecology and evolution. American Journal of Primatology, 2018, 80, e22867.	1.7	100
50	Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nature Microbiology, 2018, 3, 234-242.	13.3	118
51	Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genetics, 2018, 14, e1007376.	3.5	65
52	Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. ELife, 2018, 7, .	6.0	70
53	Pre-Engraftment Gut Colonization with Enterococcus Casseliflavus Improves Survival after Allogeneic Hematopoietic Cell Transplantation. Blood, 2018, 132, 813-813.	1.4	0
54	A Microbiome Foundation for the Study of Crohn's Disease. Cell Host and Microbe, 2017, 21, 301-304.	11.0	46

#	Article	IF	CITATIONS
55	Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. American Journal of Clinical Nutrition, 2017, 105, 589-599.	4.7	74
56	Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. American Journal of Clinical Nutrition, 2017, 105, 635-650.	4.7	203
57	High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut. MSphere, 2017, 2, .	2.9	94
58	Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (<i>Propithecus verreauxi</i>). Ecology and Evolution, 2017, 7, 5732-5745.	1.9	90
59	Moving beyond <i>de novo</i> clustering in fungal community ecology. New Phytologist, 2017, 216, 629-634.	7.3	17
60	Infant fungal communities: current knowledge and research opportunities. BMC Medicine, 2017, 15, 30.	5.5	67
61	Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota. Translational Research, 2017, 179, 116-125.	5.0	16
62	HOMINID: a framework for identifying associations between host genetic variation and microbiome composition. GigaScience, 2017, 6, 1-7.	6.4	9
63	Diverse bacterial communities exist on canine skin and are impacted by cohabitation and time. PeerJ, 2017, 5, e3075.	2.0	30
64	Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity. Scientific Reports, 2016, 6, 38599.	3.3	5
65	Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. Cell Host and Microbe, 2016, 20, 515-526.	11.0	337
66	Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10376-10381.	7.1	369
67	Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology, 2016, 34, 942-949.	17.5	623
68	Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nature Microbiology, 2016, 1 , 16140 .	13.3	275
69	Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Medicine, 2016, 8, 49.	8.2	136
70	NINJA-OPS: Fast Accurate Marker Gene Alignment Using Concatenated Ribosomes. PLoS Computational Biology, 2016, 12, e1004658.	3.2	66
71	Chemotherapyâ€driven dysbiosis in the intestinal microbiome. Alimentary Pharmacology and Therapeutics, 2015, 42, 515-528.	3.7	334
72	Temporal Relationships Exist Between Cecum, Ileum, and Litter Bacterial Microbiomes in a Commercial Turkey Flock, and Subtherapeutic Penicillin Treatment Impacts Ileum Bacterial Community Establishment. Frontiers in Veterinary Science, 2015, 2, 56.	2.2	48

#	Article	IF	CITATIONS
7 3	Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Medicine, 2015, 7, 55.	8.2	197
74	Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome, 2015, 3, 10.	11.1	218
7 5	Antibiotics, Pediatric Dysbiosis, and Disease. Cell Host and Microbe, 2015, 17, 553-564.	11.0	428
76	Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nature Communications, 2015, 6, 7838.	12.8	26
77	Complementary Amplicon-Based Genomic Approaches for the Study of Fungal Communities in Humans. PLoS ONE, 2015, 10, e0116705.	2.5	45
78	Bygiene: The New Paradigm of Bidirectional Hygiene. Yale Journal of Biology and Medicine, 2015, 88, 359-65.	0.2	12
79	The guts of obesity: progress and challenges in linking gut microbes to obesity. Discovery Medicine, 2015, 19, 81-8.	0.5	8
80	Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Medicine, 2014, 6, 107.	8.2	322
81	Multi-omics analysis of inflammatory bowel disease. Immunology Letters, 2014, 162, 62-68.	2.5	42
82	The Treatment-Naive Microbiome in New-Onset Crohn's Disease. Cell Host and Microbe, 2014, 15, 382-392.	11.0	2,582
82	The Treatment-Naive Microbiome in New-Onset Crohn's Disease. Cell Host and Microbe, 2014, 15, 382-392. Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230.	11.0	2,582
83	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230.	28.9	64
83	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230. Rethinking "Enterotypes― Cell Host and Microbe, 2014, 16, 433-437. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.	28.9	321
83 84 85	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230. Rethinking "Enterotypes― Cell Host and Microbe, 2014, 16, 433-437. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31, 814-821.	28.9 11.0 17.5	64 321 8,049
83 84 85 86	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230. Rethinking "Enterotypes― Cell Host and Microbe, 2014, 16, 433-437. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31, 814-821. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science, 2013, 339, 548-554. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut,	28.9 11.0 17.5	64 321 8,049 1,012
83 84 85 86	Advancing the Microbiome Research Community. Cell, 2014, 159, 227-230. Rethinking "Enterotypes― Cell Host and Microbe, 2014, 16, 433-437. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31, 814-821. Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science, 2013, 339, 548-554. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut, 2013, 62, 1505-1510. Cohabiting family members share microbiota with one another and with their dogs. ELife, 2013, 2,	28.9 11.0 17.5 12.6	64 321 8,049 1,012

#	Article	IF	CITATIONS
91	Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 2011, 332, 970-974.	12.6	1,712
92	Moving pictures of the human microbiome. Genome Biology, 2011, 12, R50.	9.6	934
93	Human-Associated Microbial Signatures: Examining Their Predictive Value. Cell Host and Microbe, 2011, 10, 292-296.	11.0	134
94	Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 2011, 334, 105-108.	12.6	5,253
95	Supervised classification of human microbiota. FEMS Microbiology Reviews, 2011, 35, 343-359.	8.6	377
96	UniFrac: an effective distance metric for microbial community comparison. ISME Journal, 2011, 5, 169-172.	9.8	2,280
97	Supervised classification of microbiota mitigates mislabeling errors. ISME Journal, 2011, 5, 570-573.	9.8	42
98	Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 2011, 8, 761-763.	19.0	1,284
99	QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7, 335-336.	19.0	31,818
100	Direct sequencing of the human microbiome readily reveals community differences. Genome Biology, 2010, 11, 210.	9.6	134