List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6321748/publications.pdf Version: 2024-02-01

		46918	28224
181	12,949	47	105
papers	citations	h-index	g-index
192	192	192	15415
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	HERBICIDES THAT INHIBIT ACETOLACTATE SYNTHASE. Frontiers of Agricultural Science and Engineering, 2022, 9, 155.	0.9	2
2	Stereo-Defined Acyclic Nucleoside Phosphonates are Selective and Potent Inhibitors of Parasite 6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2022, 65, 4030-4057.	2.9	3
3	Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117142119.	3.3	64
4	Dihydroxyâ€Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry - A European Journal, 2022, 28, .	1.7	5
5	Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13, .	5.8	17
6	Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 2021, 184, 184-193.e10.	13.5	201
7	Discovery of a Pyrimidinedione Derivative with Potent Inhibitory Activity against Mycobacterium tuberculosis Ketol–Acid Reductoisomerase. Chemistry - A European Journal, 2021, 27, 3130-3141.	1.7	10
8	Analogues of the Herbicide, <i>N</i> -Hydroxy- <i>N</i> -isopropyloxamate, Inhibit <i>Mycobacterium tuberculosis</i> Ketol-Acid Reductoisomerase and Their Prodrugs Are Promising Anti-TB Drug Leads. Journal of Medicinal Chemistry, 2021, 64, 1670-1684.	2.9	10
9	High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein and Cell, 2021, 12, 877-888.	4.8	95
10	<i>Helicobacter pylori</i> Xanthine–Guanine–Hypoxanthine Phosphoribosyltransferase—A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. Journal of Medicinal Chemistry, 2021, 64, 5710-5729.	2.9	4
11	Architecture of the mycobacterial succinate dehydrogenase with a membrane-embedded Rieske FeS cluster. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
12	Acyclic nucleoside phosphonates with adenine nucleobase inhibit Trypanosoma brucei adenine phosphoribosyltransferase in vitro. Scientific Reports, 2021, 11, 13317.	1.6	8
13	Coupling of N7-methyltransferase and 3′-5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 2021, 184, 3474-3485.e11.	13.5	111
14	Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels. Nature Communications, 2021, 12, 4621.	5.8	24
15	Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and inÂvitro antimalarial activity. European Journal of Medicinal Chemistry, 2021, 219, 113416.	2.6	7
16	Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093621.	1.4	7
17	Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragmentâ€Based Approach. ChemMedChem, 2021, 16, 3342-3359.	1.6	3
18	Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. ELife, 2021, 10, .	2.8	22

#	Article	IF	CITATIONS
19	Conformational Changes in a Macrolide Antibiotic Binding Protein From Mycobacterium smegmatis Upon ADP Binding. Frontiers in Microbiology, 2021, 12, 780954.	1.5	0
20	Structural insights into substrate recognition by the type VII secretion system. Protein and Cell, 2020, 11, 124-137.	4.8	25
21	Herbicides That Target Acetohydroxyacid Synthase Are Potent Inhibitors of the Growth of Drug-Resistant <i>Candida auris</i> . ACS Infectious Diseases, 2020, 6, 2901-2912.	1.8	13
22	Towards a sustainable generation of pseudopterosin-type bioactives. Green Chemistry, 2020, 22, 6033-6046.	4.6	9
23	Inhibition studies of ketol-acid reductoisomerases from pathogenic microorganisms. Archives of Biochemistry and Biophysics, 2020, 692, 108516.	1.4	8
24	Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Scientific Reports, 2020, 10, 12882.	1.6	13
25	Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Science Advances, 2020, 6, .	4.7	19
26	Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nature Communications, 2020, 11, 4245.	5.8	20
27	Structures of fungal and plant acetohydroxyacid synthases. Nature, 2020, 586, 317-321.	13.7	37
28	Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2. Protein and Cell, 2020, 11, 505-517.	4.8	13
29	Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural and Molecular Biology, 2020, 27, 529-532.	3.6	339
30	Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.	13.7	3,133
31	Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse. Protein and Cell, 2020, 11, 613-617.	4.8	21
32	Structural Basis for the Inhibition of Mycobacterial MmpL3 by NITD-349 and SPIRO. Journal of Molecular Biology, 2020, 432, 4426-4434.	2.0	27
33	Discovery, Synthesis and Evaluation of a Ketolâ€Acid Reductoisomerase Inhibitor. Chemistry - A European Journal, 2020, 26, 8958-8968.	1.7	15
34	Structures of <i>Mycobacterium tuberculosis</i> Penicillin-Binding Protein 3 in Complex with Five <i>β</i> -Lactam Antibiotics Reveal Mechanism of Inactivation. Molecular Pharmacology, 2020, 97, 287-294.	1.0	20
35	Structural basis for the broad substrate specificity of two acyl-CoA dehydrogenases FadE5 from mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16324-16332.	3.3	7
36	Adaptation of a continuous, calorimetric kinetic assay to study the agmatinase-catalyzed hydrolytic reaction. Analytical Biochemistry, 2020, 595, 113618.	1.1	2

#	Article	IF	CITATIONS
37	Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops. Plant Science, 2020, 294, 110445.	1.7	37
38	Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors. European Journal of Medicinal Chemistry, 2020, 193, 112178.	2.6	12
39	Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368, 779-782.	6.0	1,228
40	Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science, 2020, 368, 1211-1219.	6.0	82
41	Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182, 417-428.e13.	13.5	672
42	Crystal structures ofTrypanosoma bruceihypoxanthine – guanine – xanthine phosphoribosyltransferase in complex withIMP,GMPandXMP. FEBS Journal, 2019, 286, 4721-4736.	2.2	9
43	Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. European Journal of Medicinal Chemistry, 2019, 183, 111667.	2.6	12
44	Mycobacterial dynamin-like protein IniA mediates membrane fission. Nature Communications, 2019, 10, 3906.	5.8	30
45	Synthesis, evaluation and structural investigations of potent purple acid phosphatase inhibitors as drug leads for osteoporosis. European Journal of Medicinal Chemistry, 2019, 182, 111611.	2.6	9
46	Synthesis and evaluation of novel purple acid phosphatase inhibitors. MedChemComm, 2019, 10, 61-71.	3.5	6
47	Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. Journal of Computer-Aided Molecular Design, 2019, 33, 357-366.	1.3	38
48	Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell, 2019, 176, 636-648.e13.	13.5	172
49	The Binding Mode of an ADP Analogue to a Metallohydrolase Mimics the Likely Transition State. ChemBioChem, 2019, 20, 1536-1540.	1.3	16
50	Relative catalytic efficiencies and transcript levels of three <scp>d</scp> ―and two <scp>l</scp> â€lactate dehydrogenases for optically pure <scp>d</scp> â€lactate production in <i>Sporolactobacillus inulinus</i> . MicrobiologyOpen, 2019, 8, e00704.	1.2	3
51	Synthesis of the <i>seco</i> â€Limonoid BCD Ring System Identifies a Hsp90 Chaperon Machinery (p23) Inhibitor. Chemistry - A European Journal, 2019, 25, 1451-1455.	1.7	14
52	Structural insights into the mechanism of inhibition of AHAS by herbicides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1945-E1954.	3.3	44
53	Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target. Protein and Cell, 2018, 9, 971-975.	4.8	6
54	Design of <i>Plasmodium vivax</i> Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chemical Biology, 2018, 13, 82-90.	1.6	22

#	Article	IF	CITATIONS
55	Pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase. European Journal of Medicinal Chemistry, 2018, 159, 10-22.	2.6	10
56	Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9649-E9658.	3.3	40
57	An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 2018, 362, .	6.0	117
58	Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nature Catalysis, 2018, 1, 878-888.	16.1	106
59	Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics. European Journal of Medicinal Chemistry, 2018, 157, 462-479.	2.6	15
60	Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnology for Biofuels, 2018, 11, 20.	6.2	43
61	Acyclic nucleoside phosphonates with unnatural nucleobases, favipiravir and allopurinol, designed as potential inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases. Tetrahedron, 2018, 74, 5886-5897.	1.0	11
62	Evaluation of the Trypanosoma brucei 6-oxopurine salvage pathway as a potential target for drug discovery. PLoS Neglected Tropical Diseases, 2018, 12, e0006301.	1.3	28
63	Oligomeric state of hypoxanthineâ^'guanine phosphoribosyltransferase from Mycobacterium tuberculosis. Biochimie, 2017, 135, 6-14.	1.3	9
64	Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1091-E1100.	3.3	102
65	The Role of a FAD Cofactor in the Regulation of Acetohydroxyacid Synthase by Redox Signaling Molecules. Journal of Biological Chemistry, 2017, 292, 5101-5109.	1.6	11
66	Visualization of the Reaction Trajectory and Transition State in a Hydrolytic Reaction Catalyzed by a Metalloenzyme. Chemistry - A European Journal, 2017, 23, 4778-4781.	1.7	27
67	Acyclic Nucleoside Phosphonates Containing 9â€Deazahypoxanthine and a Fiveâ€Membered Heterocycle as Selective Inhibitors of Plasmodial 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2017, 12, 1133-1141.	1.6	18
68	Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs. Bioorganic and Medicinal Chemistry, 2017, 25, 4008-4030.	1.4	20
69	Novel nucleotide analogues bearing (1 H -1,2,3-triazol-4-yl)phosphonic acid moiety as inhibitors of Plasmodium and human 6-oxopurine phosphoribosyltransferases. Tetrahedron, 2017, 73, 692-702.	1.0	12
70	Crystal Structures of Staphylococcus aureus Ketolâ€Acid Reductoisomerase in Complex with Two Transition State Analogues that Have Biocidal Activity. Chemistry - A European Journal, 2017, 23, 18289-18295.	1.7	24
71	Deacidification of grass silage press juice by continuous production of acetoin from its lactate via an immobilized enzymatic reaction cascade. Bioresource Technology, 2017, 245, 1084-1092.	4.8	9
72	Structural Insight into the Activation of PknI Kinase from M.Âtuberculosis via Dimerization of the Extracellular Sensor Domain. Structure, 2017, 25, 1286-1294.e4.	1.6	5

#	Article	IF	CITATIONS
73	High resolution crystal structure of a fluoride-inhibited organophosphate-degrading metallohydrolase. Journal of Inorganic Biochemistry, 2017, 177, 287-290.	1.5	9
74	Synthesis and Evaluation of Asymmetric Acyclic Nucleoside Bisphosphonates as Inhibitors of <i>Plasmodium falciparum</i> and Human Hypoxanthine–Guanine–(Xanthine) Phosphoribosyltransferase. Journal of Medicinal Chemistry, 2017, 60, 7539-7554.	2.9	18
75	High Resolution Crystal Structures of the Acetohydroxyacid Synthaseâ€Pyruvate Complex Provide New Insights into Its Catalytic Mechanism. ChemistrySelect, 2017, 2, 11981-11988.	0.7	6
76	The 2.0 Ã X-ray structure for yeast acetohydroxyacid synthase provides new insights into its cofactor and quaternary structure requirements. PLoS ONE, 2017, 12, e0171443.	1.1	8
77	Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry - A European Journal, 2016, 22, 7427-7436.	1.7	30
78	Crystal structure of Mycobacterium tuberculosis ketolâ€acid reductoisomerase at 1.0 à resolution – a potential target for antiâ€tuberculosis drug discovery. FEBS Journal, 2016, 283, 1184-1196.	2.2	33
79	Commercial Herbicides Can Trigger the Oxidative Inactivation of Acetohydroxyacid Synthase. Angewandte Chemie - International Edition, 2016, 55, 4247-4251.	7.2	18
80	Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase. Scientific Reports, 2016, 6, 35894.	1.6	15
81	Crystal Structures of Acyclic Nucleoside Phosphonates in Complex withEscherichia coliHypoxanthine Phosphoribosyltransferase. ChemistrySelect, 2016, 1, 6267-6276.	0.7	8
82	AlMâ€1: An Antibioticâ€Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry - A European Journal, 2016, 22, 17704-17714.	1.7	28
83	Commercial Herbicides Can Trigger the Oxidative Inactivation of Acetohydroxyacid Synthase. Angewandte Chemie, 2016, 128, 4319-4323.	1.6	2
84	Characterization and structural analysis of a potent anticoagulant phospholipase A2 from Pseudechis australis snake venom. Toxicon, 2016, 111, 37-49.	0.8	10
85	Synthesis and Evaluation of Novel Acyclic Nucleoside Phosphonates as Inhibitors of <i>Plasmodium falciparum</i> and Human 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2015, 10, 1707-1723.	1.6	21
86	Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, <i>Plasmodium falciparum</i> and <i>vivax</i> 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents. Journal of Medicinal Chemistry, 2015, 58, 827-846.	2.9	49
87	Synthesis, conformational studies, and biological properties of phosphonomethoxyethyl derivatives of nucleobases with a locked conformation via a pyrrolidine ring. Organic and Biomolecular Chemistry, 2015, 13, 4693-4705.	1.5	12
88	First Crystal Structures of <i>Mycobacterium tuberculosis</i> 6-Oxopurine Phosphoribosyltransferase: Complexes with GMP and Pyrophosphate and with Acyclic Nucleoside Phosphonates Whose Prodrugs Have Antituberculosis Activity. Journal of Medicinal Chemistry, 2015, 58, 4822-4838.	2.9	36
89	Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases. Bioorganic and Medicinal Chemistry, 2015, 23, 5502-5510.	1.4	29
90	Acyclic nucleoside phosphonates containing a second phosphonate group are potent inhibitors of the 6-oxopurine phosphoribosyltransferases and have antimalarial activity. Malaria Journal, 2014, 13, P91.	0.8	0

#	Article	IF	CITATIONS
91	International Year of Crystallography. Australian Journal of Chemistry, 2014, 67, 1718.	0.5	Ο
92	The applications of binuclear metallohydrolases in medicine: Recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. European Journal of Medicinal Chemistry, 2014, 76, 132-144.	2.6	44
93	Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry. Journal of Biological Inorganic Chemistry, 2014, 19, 389-398.	1.1	14
94	Acetohydroxyacid Synthase: A Target for Antimicrobial Drug Discovery. Current Pharmaceutical Design, 2014, 20, 740-753.	0.9	43
95	The effect of novel [3-fluoro-(2-phosphonoethoxy)propyl]purines on the inhibition of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases. European Journal of Medicinal Chemistry, 2013, 67, 81-89.	2.6	19
96	Inhibition of the <i>Escherichia coli</i> 6-Oxopurine Phosphoribosyltransferases by Nucleoside Phosphonates: Potential for New Antibacterial Agents. Journal of Medicinal Chemistry, 2013, 56, 6967-6984.	2.9	41
97	Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity. Journal of Medicinal Chemistry, 2013, 56, 2513-2526.	2.9	59
98	Sulfonylureas Have Antifungal Activity and Are Potent Inhibitors of Candida albicans Acetohydroxyacid Synthase. Journal of Medicinal Chemistry, 2013, 56, 210-219.	2.9	64
99	Role of Human Hypoxanthine Guanine Phosphoribosyltransferase in Activation of the Antiviral Agent T-705 (Favipiravir). Molecular Pharmacology, 2013, 84, 615-629.	1.0	94
100	The structure of Human Microplasmin in Complex with Textilinin-1, an Aprotinin-like Inhibitor from the Australian Brown Snake. PLoS ONE, 2013, 8, e54104.	1.1	19
101	Identification of Purple Acid Phosphatase Inhibitors by Fragmentâ€Based Screening: Promising New Leads for Osteoporosis Therapeutics. Chemical Biology and Drug Design, 2012, 80, 665-674.	1.5	28
102	Synthesis of Novel <i>N</i> -Branched Acyclic Nucleoside Phosphonates As Potent and Selective Inhibitors of Human, Plasmodium falciparum and Plasmodium vivax 6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2012, 55, 6209-6223.	2.9	64
103	Bacterial and Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit during the Catalytic Cycle. Journal of Molecular Biology, 2012, 424, 168-179.	2.0	33
104	A focused sulfated glycoconjugate Ugi library for probing heparan sulfate-binding angiogenic growth factors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6190-6194.	1.0	14
105	Binuclear Metallohydrolases: Complex Mechanistic Strategies for a Simple Chemical Reaction. Accounts of Chemical Research, 2012, 45, 1593-1603.	7.6	129
106	The structure–activity relationship in herbicidal monosubstituted sulfonylureas. Pest Management Science, 2012, 68, 618-628.	1.7	20
107	Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases. Bioorganic and Medicinal Chemistry, 2012. 20. 1076-1089.	1.4	36
108	Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogs as potential antimalarial agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1222-1230.	1.4	25

#	Article	IF	CITATIONS
109	Penicillin inhibitors of purple acid phosphatase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2555-2559.	1.0	13
110	Phosphate-bound structure of an organophosphate-degrading enzyme from Agrobacterium radiobacter. Journal of Inorganic Biochemistry, 2012, 106, 19-22.	1.5	15
111	Chemical Synthesis, in Vitro Acetohydroxyacid Synthase (AHAS) Inhibition, Herbicidal Activity, and Computational Studies of Isatin Derivatives. Journal of Agricultural and Food Chemistry, 2011, 59, 9892-9900.	2.4	39
112	Editorial [Hot Topic:Drug Targets for the Treatment of Protozoan Parasitic Diseases (Guest Editor:) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 50
113	6-Oxopurine Phosphoribosyltransferase: A Target for the Development of Antimalarial Drugs. Current Topics in Medicinal Chemistry, 2011, 11, 2085-2102.	1.0	36
114	The organophosphate-degrading enzyme from <i>Agrobacterium radiobacter</i> displays mechanistic flexibility for catalysis. Biochemical Journal, 2010, 432, 565-573.	1.7	74
115	Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: A target for anti-malarial chemotherapy. Molecular and Biochemical Parasitology, 2010, 173, 165-169.	0.5	35
116	Crystal structures of two novel sulfonylurea herbicides in complex with <i>Arabidopsis thaliana</i> acetohydroxyacid synthase. FEBS Journal, 2009, 276, 1282-1290.	2.2	49
117	Crystal structure of textilininâ€1, a Kunitzâ€type serine protease inhibitor from the venom of the Australian common brown snake (<i>Pseudonaja textilis</i>). FEBS Journal, 2009, 276, 3163-3175.	2.2	46
118	Inhibition of purple acid phosphatase with α-alkoxynaphthylmethylphosphonic acids. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 163-166.	1.0	31
119	Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase. Bioorganic and Medicinal Chemistry, 2009, 17, 6218-6232.	1.4	82
120	Conformational Changes in a Plant Ketol-Acid Reductoisomerase upon Mg2+ and NADPH Binding as Revealed by Two Crystal Structures. Journal of Molecular Biology, 2009, 389, 167-182.	2.0	43
121	Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside Phosphonates: A New Class of Antimalarial Therapeutics. Journal of Medicinal Chemistry, 2009, 52, 4391-4399.	2.9	107
122	Crystal structures of free, IMP-, and GMP-bound Escherichia coli hypoxanthine phosphoribosyltransferase. Protein Science, 2009, 11, 1626-1638.	3.1	44
123	Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. BMC Structural Biology, 2008, 8, 6.	2.3	83
124	Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry, 2008, 46, 309-324.	2.8	281
125	Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?. BMC Research Notes, 2008, 1, 78.	0.6	13
126	Substrate-Promoted Formation of a Catalytically Competent Binuclear Center and Regulation of Reactivity in a Glycerophosphodiesterase from <i>Enterobacter aerogenes</i> . Journal of the American Chemical Society, 2008, 130, 14129-14138.	6.6	72

#	Article	IF	CITATIONS
127	Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1627-1635.	1.1	51
128	Structure-function Relationships in Human Hypoxanthine-guanine Phosphoribosyltransferase (HGPRT) by Random Mutagenesis. Chemical Research in Chinese Universities, 2006, 22, 251-252.	1.3	0
129	Lead Compounds for Antimalarial Chemotherapy:Â Purine Base Analogs Discriminate between Human andP.Falciparum6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2006, 49, 7479-7486.	2.9	55
130	The Catalytic Mechanisms of Binuclear Metallohydrolases. Chemical Reviews, 2006, 106, 3338-3363.	23.0	395
131	Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene, 2006, 377, 12-20.	1.0	52
132	Inhibition studies of purple acid phosphatases: implications for the catalytic mechanism. Journal of the Brazilian Chemical Society, 2006, 17, 1558-1565.	0.6	33
133	Crystallization and preliminary X-ray analysis of a Kunitz-type inhibitor, textilinin-1 fromPseudonaja textilis textilis. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 642-645.	0.7	6
134	Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the United States of America, 2006, 103, 569-573.	3.3	317
135	The crystal structure of a bacterial Class II ketol-acid reductoisomerase: Domain conservation and evolution. Protein Science, 2005, 14, 3089-3100.	3.1	40
136	Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site. FEBS Journal, 2005, 272, 593-602.	2.2	50
137	Structure-activity relationships for a new family of sulfonylurea herbicides. Journal of Computer-Aided Molecular Design, 2005, 19, 801-820.	1.3	45
138	Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 273-278.	3.3	152
139	Elucidating the Specificity of Binding of Sulfonylurea Herbicides to Acetohydroxyacid Synthaseâ€. Biochemistry, 2005, 44, 2330-2338.	1.2	118
140	The Crystal Structure of Free Human Hypoxanthine-guanine Phosphoribosyltransferase Reveals Extensive Conformational Plasticity Throughout the Catalytic Cycle. Journal of Molecular Biology, 2005, 351, 170-181.	2.0	52
141	The Crystal Structures of Klebsiella pneumoniae Acetolactate Synthase with Enzyme-bound Cofactor and with an Unusual Intermediate. Journal of Biological Chemistry, 2004, 279, 2242-2253.	1.6	73
142	Crystallization ofArabidopsis thalianaacetohydroxyacid synthase in complex with the sulfonylurea herbicide chlorimuron ethyl. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 153-155.	2.5	32
143	Facile crystallization ofEscherichia coliketol-acid reductoisomerase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1432-1434.	2.5	3
144	Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Archives of Biochemistry and Biophysics, 2004, 424, 154-162.	1.4	54

#	Article	IF	CITATIONS
145	Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. FEBS Journal, 2003, 270, 2895-2904.	0.2	80
146	Molecular Basis of Sulfonylurea Herbicide Inhibition of Acetohydroxyacid Synthase. Journal of Biological Chemistry, 2003, 278, 7639-7644.	1.6	147
147	Structure and Properties of Acetohydroxyacid Synthase. Oxidative Stress and Disease, 2003, , .	0.3	0
148	Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. Journal of Molecular Biology, 2002, 317, 249-262.	2.0	188
149	Structure of CcmG/DsbE at 1.14 Ã Resolution. Structure, 2002, 10, 973-979.	1.6	69
150	Three-dimensional structure of an immunoglobulin light-chain dimer with amyloidogenic properties. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 815-823.	2.5	34
151	Crystallization of the FAD-independent acetolactate synthase ofKlebsiella pneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1237-1239.	2.5	9
152	Crystallization and preliminary diffraction studies of native and selenomethionine CcmG (CycY, DsbE). Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1293-1295.	2.5	10
153	Crystallization of the catalytic subunit ofSaccharomyces cerevisiaeacetohydroxyacid synthase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1321-1323.	2.5	17
154	The three-dimensional structure of a complex of a murine Fab (NC10.14) with a potent sweetener (NC174): an illustration of structural diversity in antigen recognition by immunoglobulins. Journal of Molecular Biology, 2000, 302, 853-872.	2.0	27
155	Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene, 2000, 250, 117-125.	1.0	141
156	An unusual human IgM antibody with a protruding HCDR3 and high avidity for its peptide ligands. Molecular Immunology, 2000, 37, 295-310.	1.0	15
157	Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone, 2000, 27, 575-584.	1.4	193
158	Crystallization and preliminary X-ray diffraction studies of mammalian purple acid phosphatase. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1462-1464.	2.5	5
159	Crystallization and preliminary X-ray diffraction data for a purple acid phosphatase from sweet potato. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 2051-2052.	2.5	17
160	Crystal structure of mammalian purple acid phosphatase. Structure, 1999, 7, 757-767.	1.6	171
161	Comparison of the three-dimensional structures of a humanized and a chimeric Fab of an anti- ^{[3} -interferon antibody. Journal of Molecular Recognition, 1999, 12, 19-32.	1.1	27
162	Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure, 1998, 6, 757-767.	1.6	147

#	Article	IF	CITATIONS
163	Three-dimensional structure of a human Fab with high affinity for tetanus toxoid. Immunotechnology: an International Journal of Immunological Engineering, 1998, 3, 253-270.	2.4	43
164	Diverse binding site structures revealed in homology models of polyreactive immunoglobulins. Journal of Computer-Aided Molecular Design, 1997, 11, 453-461.	1.3	38
165	The uncharged surface features surrounding the active site of <i>Escherichia coli</i> DsbA are conserved and are implicated in peptide binding. Protein Science, 1997, 6, 1148-1156.	3.1	78
166	Structural analysis of three His32 mutants of DsbA: Support for an electrostatic role of His32 in DsbA stability. Protein Science, 1997, 6, 1893-1900.	3.1	82
167	Crystallographic Analysis of Antigen–Antibody Complexes: End-on Insertion of Ligands in Antibodies—CDR3 Loops as Arbiters. Methods, 1996, 9, 542-558.	1.9	6
168	The 1.1 å crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure, 1996, 4, 417-423.	1.6	99
169	Intramolecular signaling upon complexation. FASEB Journal, 1995, 9, 101-106.	0.2	37
170	Local and Transmitted Conformational Changes on Complexation of an Anti-sweetener Fab. Journal of Molecular Biology, 1994, 236, 247-274.	2.0	97
171	Structural aspects of conformational changes in ligand binding by antibody fragments. Research in Immunology, 1994, 145, 56-61.	0.9	5
172	Crystallization of an Fv fragment from a human IgM cryoglobulin by a microseeding technique. Journal of Crystal Growth, 1993, 126, 229-244.	0.7	11
173	Crystal Structures of Intact IgG Antibodies. ImmunoMethods, 1993, 3, 197-210.	0.8	8
174	Three-dimensional structure of an Fv from a human IgM immunoglobulin. Journal of Molecular Biology, 1992, 228, 188-207.	2.0	85
175	Difunctionalization of primary aromatic amines with ethylene; synthesis of μ-arylnitrilobis(ethane-2,1-diyl)dimercury(II) complexes. Crystal structure of 2,4,6-Me3C6H2N-(CH2CH2HgCl)2. Journal of Organometallic Chemistry, 1989, 375, C1-C4.	0.8	9
176	The effect of fast protein liquid chromatography (FPLC) cationic exchange purification on the crystallization of a monoclonal Fab fragment. Analytical Biochemistry, 1988, 170, 390-392.	1.1	3
177	The crystal structure of Ba3V4O13. Journal of Solid State Chemistry, 1987, 71, 390-395.	1.4	9
178	Crystal structures of some niobium and tantalum oxides. Journal of Solid State Chemistry, 1986, 61, 181-187.	1.4	14
179	Crystallization and preliminary crystallographic data of the fab fragment of an anti-phenylalanine hydroxylase monoclonal antibody. Journal of Molecular Biology, 1985, 186, 479-480.	2.0	4

 $180 \qquad \mbox{Comparison of the three-dimensional structures of a humanized and a chimeric Fab of an anti-13-interferon antibody.} \ , 0, .$

1

#	Article	IF	CITATIONS
181	Genome-Guided Analysis of Seven Weed Species Reveals Conserved Sequence and Structural Features of Key Gene Targets for Herbicide Development. Frontiers in Plant Science, 0, 13, .	1.7	2