Yvonne J Hofstetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6320796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen-induced degradation in AgBiS ₂ nanocrystal solar cells. Nanoscale, 2022, 14, 3020-3030.	5.6	6
2	Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells. Nature Communications, 2022, 13, .	12.8	23
3	A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 2021, 12, 1878.	12.8	209
4	Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flexible and Printed Electronics, 2021, 6, 035001.	2.7	16
5	Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS ₂ Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 18750-18757.	8.0	16
6	Dimeric Phenazinothiadiazole Acceptors in Bulk Heterojunction Solar Cells. Organic Materials, 2021, 03, 168-173.	2.0	3
7	Efficient Thermally Evaporated γ sPbl ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	19.5	35
8	2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.	11.7	108
9	Effect of Antisolvent Application Rate on Film Formation and Photovoltaic Performance of Methylammoniumâ€Free Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100061.	5.8	13
10	The Role of Additives in Suppressing the Degradation of Liquidâ€Exfoliated WS 2 Monolayers. Advanced Materials, 2021, 33, 2102883.	21.0	6
11	Sustainability in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 1-17.	8.0	53
12	23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Science Advances, 2021, 7, eabj7930.	10.3	205
13	Enhancing the Open-Circuit Voltage of Perovskite Solar Cells by Embedding Molecular Dipoles within Their Hole-Blocking Layer. ACS Applied Materials & Interfaces, 2020, 12, 3572-3579.	8.0	30
14	Energy Level Alignment in Ternary Organic Solar Cells. Advanced Electronic Materials, 2020, 6, 2000213.	5.1	18
15	Vacuum-Induced Degradation of 2D Perovskites. Frontiers in Chemistry, 2020, 8, 66.	3.6	19
16	Liquid Exfoliation of Ni ₂ P ₂ S ₆ : Structural Characterization, Size-Dependent Properties, and Degradation. Chemistry of Materials, 2019, 31, 9127-9139.	6.7	13
17	Quantifying the Damage Induced by X-ray Photoelectron Spectroscopy Depth Profiling of Organic Conjugated Polymers. ACS Applied Polymer Materials, 2019, 1, 1372-1381.	4.4	26
18	The effect of side-chain length on the microstructure and processing window of zone-cast naphthalene-based bispentalenes. Journal of Materials Chemistry C, 2019, 7, 13493-13501.	5.5	14

YVONNE J HOFSTETTER

#	Article	IF	CITATIONS
19	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	3.6	14
20	Triptycenylâ€phenazinoâ€thiadiazole as acceptor in organic bulk-heterojunction solar cells. Organic Electronics, 2018, 57, 285-291.	2.6	16
21	Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis(tetramethylguanidino)ben-zene. ACS Nano, 2018, 12, 5895-5902.	14.6	40
22	Effect of Injection Layer Sub-Bandgap States on Electron Injection in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 6220-6227.	8.0	25
23	Triptycene-trisaroyleneimidazoles as non-fullerene acceptors – Influence of side-chains on solubility, device morphology and performance. Organic Electronics, 2017, 47, 211-219.	2.6	15
24	<i>N</i> -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	5.8	30
25	High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy, 2017, 39, 400-408.	16.0	120
26	Simultaneous enhancement in open circuit voltage and short circuit current of hybrid organic–inorganic photovoltaics by inorganic interfacial modification. Journal of Materials Chemistry C, 2016, 4, 1111-1116.	5.5	11
27	23.7% Efficient Inverted Perovskite Solar Cells by Dual Interfacial Modification. , 0, , .		0