List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6319221/publications.pdf Version: 2024-02-01

ALMUT SCHULZE

#	Article	IF	CITATIONS
1	SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?. International Journal of Molecular Sciences, 2022, 23, 3726.	4.1	5
2	Acute systemic knockdown of <i>Atg7</i> is lethal and causes pancreatic destruction in shRNA transgenic mice. Autophagy, 2022, 18, 2880-2893.	9.1	3
3	Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. IScience, 2021, 24, 102128.	4.1	15
4	LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nature Cancer, 2021, 2, 201-217.	13.2	27
5	Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers, 2021, 13, 1327.	3.7	5
6	Fatty acid synthesis enables brain metastasis. Nature Cancer, 2021, 2, 374-376.	13.2	7
7	MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2021, 12, 5066.	12.8	34
8	Mevalonate Pathway Provides Ubiquinone to Maintain Pyrimidine Synthesis and Survival in p53-Deficient Cancer Cells Exposed to Metabolic Stress. Cancer Research, 2020, 80, 189-203.	0.9	53
9	Cancer metabolism – An update. Molecular Metabolism, 2020, 33, 1.	6.5	2
10	Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 2020, 31, 62-76.	16.2	493
11	Neutral Sphingomyelinase-2 (NSM 2) Controls T Cell Metabolic Homeostasis and Reprogramming During Activation. Frontiers in Molecular Biosciences, 2020, 7, 217.	3.5	6
12	Inhibition of cholesterol and steroid synthesis through miR-205 target gene SQLE is an intriguing treatment strategy in various in vitro and in vivo models of prostate cancer. European Urology Open Science, 2020, 19, e1840.	0.4	0
13	Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nature Microbiology, 2020, 5, 1390-1402.	13.3	29
14	Cathepsin Inhibition Modulates Metabolism and Polarization of Tumor-Associated Macrophages. Cancers, 2020, 12, 2579.	3.7	28
15	mTOR Signaling and SREBP Activity Increase FADS2 Expression and Can Activate Sapienate Biosynthesis. Cell Reports, 2020, 31, 107806.	6.4	41
16	The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Science Signaling, 2019, 12, .	3.6	22
17	The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metabolism, 2019, 30, 556-572.e5.	16.2	120
18	Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death. Cell Communication and Signaling, 2019, 17, 87.	6.5	32

#	Article	IF	CITATIONS
19	MicroRNA-205 driven rewiring of cholesterol biosynthesis identifies therapeutic windows in aggressive prostate cancer. European Urology Supplements, 2019, 18, e3089.	0.1	0
20	A MYC–GCN2–elF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	10.3	65
21	Lipid Metabolism at the Nexus of Diet and Tumor Microenvironment. Trends in Cancer, 2019, 5, 693-703.	7.4	90
22	FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575, 693-698.	27.8	1,624
23	Tumours use a metabolic twist to make lipids. Nature, 2019, 566, 333-334.	27.8	15
24	Ferroptosis: The Greasy Side of Cell Death. Chemical Research in Toxicology, 2019, 32, 362-369.	3.3	38
25	3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers. Molecular Cancer Therapeutics, 2019, 18, 376-388.	4.1	17
26	Abstract 4377: Liver X receptor mediated lipotoxicity represents a treatment option for liver cancer. , 2019, , .		0
27	Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Experimental and Molecular Medicine, 2018, 50, 1-16.	7.7	52
28	Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity. EMBO Journal, 2018, 37, .	7.8	23
29	Metformin targets cholesterol biosynthesis through miR-205-induced SQLE downregulation in prostate cancer. European Urology Supplements, 2018, 17, e2524.	0.1	Ο
30	The big picture: exploring the metabolic cross-talk in cancer. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	9
31	Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Cancer & Metabolism, 2018, 6, 8.	5.0	36
32	The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 2018, 37, 5435-5450.	5.9	239
33	6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells. Oncogene, 2017, 36, 3287-3299.	5.9	58
34	Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics. Metabolic Engineering, 2017, 43, 173-186.	7.0	26
35	NFATc1 controls the cytotoxicity of CD8+ T cells. Nature Communications, 2017, 8, 511.	12.8	150
36	Regulation of Metabolic Activity by p53. Metabolites, 2017, 7, 21.	2.9	63

#	Article	IF	CITATIONS
37	Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics. Cell Reports, 2016, 16, 878-895.	6.4	21
38	The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer, 2016, 16, 732-749.	28.4	1,022
39	The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells. Recent Results in Cancer Research, 2016, 207, 1-22.	1.8	12
40	Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer & Metabolism, 2016, 4, 6.	5.0	186
41	Lipid desaturation – the next step in targeting lipogenesis in cancer?. FEBS Journal, 2016, 283, 2767-2778.	4.7	152
42	Functional screening identifies <scp>MCT4</scp> as a key regulator of breast cancer cell metabolism and survival. Journal of Pathology, 2015, 237, 152-165.	4.5	73
43	Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Scientific Reports, 2015, 5, 10738.	3.3	95
44	Women in Metabolism: Part 3. Cell Metabolism, 2015, 22, 949-953.	16.2	0
45	Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Cancer Cell, 2015, 27, 57-71.	16.8	596
46	SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene, 2015, 34, 5128-5140.	5.9	175
47	Abstract IA05: The role of glucose and lipid metabolism in growth and survival of cancer cells. , 2015, ,		0
48	Fatty Acid Uptake and Lipid Storage Induced by HIF- $1\hat{1}\pm$ Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation. Cell Reports, 2014, 9, 349-365.	6.4	498
49	A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Molecular Systems Biology, 2014, 10, 744.	7.2	113
50	A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Molecular Systems Biology, 2014, 10, .	7.2	63
51	Cholesteryl Esters: Fueling the Fury of Prostate Cancer. Cell Metabolism, 2014, 19, 350-352.	16.2	23
52	Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress. Cancer & Metabolism, 2014, 2, .	5.0	4
53	Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer & Metabolism, 2013, 1, 8.	5.0	198
54	Glycolysis Back in the Limelight: Systemic Targeting of HK2 Blocks Tumor Growth. Cancer Discovery, 2013, 3, 1105-1107.	9.4	55

#	Article	IF	CITATIONS
55	Genomeâ€wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Molecular Systems Biology, 2013, 9, 638.	7.2	104
56	Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer & Metabolism, 2013, 1, 3.	5.0	207
57	Cellular Fatty Acid Metabolism and Cancer. Cell Metabolism, 2013, 18, 153-161.	16.2	1,520
58	Antagonism between FOXO and MYC Regulates Cellular Powerhouse. Frontiers in Oncology, 2013, 3, 96.	2.8	69
59	Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. DMM Disease Models and Mechanisms, 2013, 6, 1353-1363.	2.4	609
60	How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491, 364-373.	27.8	800
61	Linking Glycogen and Senescence in Cancer Cells. Cell Metabolism, 2012, 16, 687-688.	16.2	29
62	Functional Metabolic Screen Identifies 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 as an Important Regulator of Prostate Cancer Cell Survival. Cancer Discovery, 2012, 2, 328-343.	9.4	174
63	FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death and Differentiation, 2012, 19, 968-979.	11.2	235
64	Targeting cancer metabolism – aiming at a tumour's sweet-spot. Drug Discovery Today, 2012, 17, 232-241.	6.4	145
65	Lipid metabolism in cancer. FEBS Journal, 2012, 279, 2610-2623.	4.7	1,076
66	Genetic ablation of S6-kinase does not prevent processing of SREBP1. Advances in Enzyme Regulation, 2011, 51, 280-290.	2.6	8
67	Flicking the Warburg Switch—Tyrosine Phosphorylation of Pyruvate Dehydrogenase Kinase Regulates Mitochondrial Activity in Cancer Cells. Molecular Cell, 2011, 44, 846-848.	9.7	36
68	A fresh look at cancer metabolism in a historical setting. EMBO Reports, 2011, 12, 289-291.	4.5	0
69	Regulation of the SREBP transcription factors by mTORC1. Biochemical Society Transactions, 2011, 39, 495-499.	3.4	71
70	A role for the cancer-associated miR-106b~25 cluster in neuronal stem cells. Aging, 2011, 3, 329-331.	3.1	10
71	Modulation of Cellular Migration and Survival by c-Myc through the Downregulation of Urokinase (uPA) and uPA Receptor. Molecular and Cellular Biology, 2010, 30, 1838-1851.	2.3	30
72	A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochemical Society Transactions, 2009, 37, 278-283.	3.4	83

#	Article	IF	CITATIONS
73	SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metabolism, 2008, 8, 224-236.	16.2	1,103
74	The Forkhead Transcription Factor FOXO3a Increases Phosphoinositide-3 Kinase/Akt Activity in Drug-Resistant Leukemic Cells through Induction of PIK3CA Expression. Molecular and Cellular Biology, 2008, 28, 5886-5898.	2.3	150
75	Induction of Mxi1-SRα by FOXO3a Contributes to Repression of Myc-Dependent Gene Expression. Molecular and Cellular Biology, 2007, 27, 4917-4930.	2.3	158
76	Direct control of caveolin-1 expression by FOXO transcription factors. Biochemical Journal, 2005, 385, 795-802.	3.7	60
77	PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 2005, 24, 6465-6481.	5.9	383
78	Involvement of MINK, a Ste20 Family Kinase, in Ras Oncogene-Induced Growth Arrest in Human Ovarian Surface Epithelial Cells. Molecular Cell, 2005, 20, 673-685.	9.7	96
79	The Transcriptional Response to Raf Activation Is Almost Completely Dependent on Mitogen-activated Protein Kinase Kinase Activity and Shows a Major Autocrine Component. Molecular Biology of the Cell, 2004, 15, 3450-3463.	2.1	63
80	A heavyweight guide through the array jungle. Journal of Cell Science, 2003, 116, 1396-1396.	2.0	0
81	From membranes to chips - a pocket guide to DNA microarray technology. Journal of Cell Science, 2002, 115, 1781-1781.	2.0	0
82	Navigating gene expression using microarrays — a technology review. Nature Cell Biology, 2001, 3, E190-E195.	10.3	460
83	Analysis of the transcriptional program induced by Raf in epithelial cells. Genes and Development, 2001, 15, 981-994.	5.9	222
84	Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes and Development, 2000, 14, 2610-2622.	5.9	270
85	Analysis of gene expression by microarrays: cell biologist's gold mine or minefield?. Journal of Cell Science, 2000, 113, 4151-4156.	2.0	24
86	Analysis of gene expression by microarrays: cell biologist's gold mine or minefield?. Journal of Cell Science, 2000, 113 Pt 23, 4151-6.	2.0	7
87	Activation of cyclin A gene expression by the cyclin encoded by human herpesvirus-8 Journal of General Virology, 1999, 80, 549-555.	2.9	20
88	Regulation of cyclin E gene expression by the human papillomavirus type 16 E7 oncoprotein. Journal of General Virology, 1999, 80, 2103-2113.	2.9	17
89	Anchorage-Independent Transcription of the Cyclin A Gene Induced by the E7 Oncoprotein of Human Papillomavirus Type 16. Journal of Virology, 1998, 72, 2323-2334.	3.4	44
90	p27 ^{<i>KIP1</i>} Blocks Cyclin E-Dependent Transactivation of Cyclin A Gene Expression. Molecular and Cellular Biology, 1997, 17, 407-415.	2.3	116

#	Article	IF	CITATIONS
91	Infection of primary cells by adeno-associated virus type 2 results in a modulation of cell cycle-regulating proteins. Journal of Virology, 1997, 71, 6020-6027.	3.4	63
92	Down-regulation of cyclin A gene expression upon genotoxic stress correlates with reduced binding of free E2F to the promoter. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1997, 8, 699-710.	0.8	19
93	Anchorage-Dependent Transcription of the Cyclin A Gene. Molecular and Cellular Biology, 1996, 16, 4632-4638.	2.3	132
94	Adenovirus E1A activates cyclin A gene transcription in the absence of growth factors through interaction with p107. Journal of Virology, 1996, 70, 2637-2642.	3.4	29
95	Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site Proceedings of the United States of America, 1995, 92, 11264-11268.	7.1	352
96	Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. Journal of Virology, 1995, 69, 6389-6399.	3.4	173
97	Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation. Journal of Virology, 1994, 68, 2206-2214.	3.4	59
98	Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene, 1994, 9, 3475-82.	5.9	46