Dominik Witzigmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Liver Delivery of Primaquine by Phospholipid-Free Small Unilamellar Vesicles with Reduced Hemolytic Toxicity. Molecular Pharmaceutics, 2022, 19, 1778-1785.	4.6	3
2	Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Advanced Materials, 2022, 34, e2201095.	21.0	66
3	Lipid nanoparticle-mediated silencing of osteogenic suppressor GNAS leads to osteogenic differentiation of mesenchymal stem cells inÂvivo. Molecular Therapy, 2022, 30, 3034-3051.	8.2	10
4	The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 2022, 188, 114416.	13.7	192
5	Gene Delivery to the Skin – How Far Have We Come?. Trends in Biotechnology, 2021, 39, 474-487.	9.3	25
6	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	22.5	62
7	Virus-Derived Peptides for Hepatic Enzyme Delivery. Molecular Pharmaceutics, 2021, 18, 2004-2014.	4.6	1
8	Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. Small, 2021, 17, e2008198.	10.0	36
9	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
10	The current landscape of nucleic acid therapeutics. Nature Nanotechnology, 2021, 16, 630-643.	31.5	578
11	Altering the intra-liver distribution of phospholipid-free small unilamellar vesicles using temperature-dependent size-tunability. Journal of Controlled Release, 2021, 333, 151-161.	9.9	8
12	Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. Journal of Controlled Release, 2021, 333, 246-257.	9.9	15
13	mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 2021, 601, 120586.	5.2	647
14	Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma. Journal of Controlled Release, 2021, 334, 138-152.	9.9	3
15	FAM13A as potential therapeutic target in modulating TGF-β-induced airway tissue remodeling in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L377-L391.	2.9	7
16	Overcoming the Mucosal Barrier: Tetraether Lipid‧tabilized Liposomal Nanocarriers Decorated with Cellâ€Penetrating Peptides Enable Oral Delivery of Vancomycin. Advanced Therapeutics, 2021, 4, 2000247.	3.2	16
17	Simultaneous, Single-Particle Measurements of Size and Loading Cive Insights into the Structure of Drug-Delivery Nanoparticles. ACS Nano, 2021, 15, 19244-19255.	14.6	23
18	Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. Advanced Science, 2020, 7, 1901923.	11.2	26

Dominik Witzigmann

#	Article	IF	CITATIONS
19	Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 239-251.	4.6	18
20	Improvement of DNA Vector Delivery of DOTAP Lipoplexes by Short-Chain Aminolipids. ACS Omega, 2020, 5, 24724-24732.	3.5	8
21	The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chemistry, 2020, 31, 2046-2059.	3.6	120
22	Physicochemical and biopharmaceutical characterization of novel Matrix-Liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 158-167.	4.3	2
23	Lipid nanoparticle technology for therapeutic gene regulation in the liver. Advanced Drug Delivery Reviews, 2020, 159, 344-363.	13.7	187
24	DNA-directed arrangement of soft synthetic compartments and their behavior <i>in vitro</i> and <i>in vivo</i> . Nanoscale, 2020, 12, 9786-9799.	5.6	11
25	Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Accounts of Chemical Research, 2019, 52, 2435-2444.	15.6	270
26	Poly(Sarcosine) Surface Modification Imparts Stealth‣ike Properties to Liposomes. Small, 2019, 15, e1904716.	10.0	50
27	Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale, 2019, 11, 9023-9031.	5.6	85
28	Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS Nano, 2019, 13, 3754-3782.	14.6	220
29	The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 2019, 14, 1084-1087.	31.5	814
30	On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale, 2019, 11, 21733-21739.	5.6	176
31	Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 82-93.	3.3	40
32	Zebrafish as a preclinical in vivo screening model for nanomedicines. Advanced Drug Delivery Reviews, 2019, 151-152, 152-168.	13.7	107
33	Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Delivery and Translational Research, 2019, 9, 404-413.	5.8	56
34	Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. ELife, 2019, 8, .	6.0	20
35	Translating nanomedicines: Thinking beyond materials? A young investigator's reply to †The Novelty Bubble'. Journal of Controlled Release, 2018, 290, 138-140.	9.9	12
36	Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. Journal of Materials Science, 2018, 53, 14975-14988.	3.7	11

DOMINIK WITZIGMANN

#	Article	IF	CITATIONS
37	PEC-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 2017, 260, 46-60.	9.9	335
38	Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo. Journal of Controlled Release, 2017, 264, 180-191.	9.9	81
39	PDMS-b-PMOXA polymersomes for hepatocyte targeting and assessment of toxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 322-332.	4.3	26
40	Oral delivery of vancomycin by tetraether lipid liposomes. European Journal of Pharmaceutical Sciences, 2017, 108, 111-118.	4.0	69
41	Functionalized Solid-Sphere PEG- <i>b</i> -PCL Nanoparticles to Target Brain Capillary Endothelial Cells <i>In Vitro</i> . Journal of Nanomaterials, 2016, 2016, 1-13.	2.7	11
42	Isolation of multiantennary N-glycans from glycoproteins for hepatocyte specific targeting via the asialoglycoprotein receptor. RSC Advances, 2016, 6, 97636-97640.	3.6	7
43	Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries. Molecular Pharmaceutics, 2016, 13, 2290-2300.	4.6	9
44	Variable asialoglycoprotein receptor 1 expression in liver disease: Implications for therapeutic intervention. Hepatology Research, 2016, 46, 686-696.	3.4	57
45	Biocompatible Polymer–Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Applied Materials & Interfaces, 2015, 7, 10446-10456.	8.0	29
46	Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Advances, 2015, 5, 74320-74328.	3.6	15
47	Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 2015, 200, 138-157.	9.9	1,477
48	Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes. Journal of Drug Targeting, 2014, 22, 232-241.	4.4	23
49	Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Research, 2013, 41, 5503-5512.	14.5	48