Dominik Witzigmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6318384/publications.pdf

Version: 2024-02-01

49 papers

6,316 citations

218677 26 h-index 50 g-index

51 all docs

51 docs citations

51 times ranked

7782 citing authors

#	Article	IF	CITATIONS
1	Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 2015, 200, 138-157.	9.9	1,477
2	The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 2019, 14, 1084-1087.	31.5	814
3	mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 2021, 601, 120586.	5 . 2	647
4	The current landscape of nucleic acid therapeutics. Nature Nanotechnology, 2021, 16, 630-643.	31.5	578
5	PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 2017, 260, 46-60.	9.9	335
6	Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Accounts of Chemical Research, 2019, 52, 2435-2444.	15.6	270
7	Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS Nano, 2019, 13, 3754-3782.	14.6	220
8	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
9	The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 2022, 188, 114416.	13.7	192
10	Lipid nanoparticle technology for therapeutic gene regulation in the liver. Advanced Drug Delivery Reviews, 2020, 159, 344-363.	13.7	187
11	On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale, 2019, 11, 21733-21739.	5.6	176
12	The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chemistry, 2020, 31, 2046-2059.	3.6	120
13	Zebrafish as a preclinical in vivo screening model for nanomedicines. Advanced Drug Delivery Reviews, 2019, 151-152, 152-168.	13.7	107
14	Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale, 2019, 11, 9023-9031.	5.6	85
15	Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo. Journal of Controlled Release, 2017, 264, 180-191.	9.9	81
16	Oral delivery of vancomycin by tetraether lipid liposomes. European Journal of Pharmaceutical Sciences, 2017, 108, 111-118.	4.0	69
17	Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Advanced Materials, 2022, 34, e2201095.	21.0	66
18	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	22.5	62

#	Article	IF	CITATIONS
19	Variable asialoglycoprotein receptor 1 expression in liver disease: Implications for therapeutic intervention. Hepatology Research, 2016, 46, 686-696.	3.4	57
20	Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Delivery and Translational Research, 2019, 9, 404-413.	5.8	56
21	Poly(Sarcosine) Surface Modification Imparts Stealthâ€Like Properties to Liposomes. Small, 2019, 15, e1904716.	10.0	50
22	Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Research, 2013, 41, 5503-5512.	14.5	48
23	Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 82-93.	3.3	40
24	Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. Small, 2021, 17, e2008198.	10.0	36
25	Biocompatible Polymer–Peptide Hybrid-Based DNA Nanoparticles for Gene Delivery. ACS Applied Materials & Interfaces, 2015, 7, 10446-10456.	8.0	29
26	PDMS-b-PMOXA polymersomes for hepatocyte targeting and assessment of toxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 322-332.	4.3	26
27	Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. Advanced Science, 2020, 7, 1901923.	11.2	26
28	Gene Delivery to the Skin – How Far Have We Come?. Trends in Biotechnology, 2021, 39, 474-487.	9.3	25
29	Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes. Journal of Drug Targeting, 2014, 22, 232-241.	4.4	23
30	Simultaneous, Single-Particle Measurements of Size and Loading Give Insights into the Structure of Drug-Delivery Nanoparticles. ACS Nano, 2021, 15, 19244-19255.	14.6	23
31	Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. ELife, 2019, 8, .	6.0	20
32	Controlled Tyrosine Kinase Inhibitor Delivery to Liver Cancer Cells by Gate-Capped Mesoporous Silica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 239-251.	4.6	18
33	Overcoming the Mucosal Barrier: Tetraether Lipidâ€Stabilized Liposomal Nanocarriers Decorated with Cellâ€Penetrating Peptides Enable Oral Delivery of Vancomycin. Advanced Therapeutics, 2021, 4, 2000247.	3.2	16
34	Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Advances, 2015, 5, 74320-74328.	3.6	15
35	Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. Journal of Controlled Release, 2021, 333, 246-257.	9.9	15
36	Translating nanomedicines: Thinking beyond materials? A young investigator's reply to †The Novelty Bubble'. Journal of Controlled Release, 2018, 290, 138-140.	9.9	12

#	Article	IF	CITATIONS
37	Functionalized Solid-Sphere PEG- <i>b</i> >-PCL Nanoparticles to Target Brain Capillary Endothelial Cells <i>In Vitro</i> . Journal of Nanomaterials, 2016, 2016, 1-13.	2.7	11
38	Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. Journal of Materials Science, 2018, 53, 14975-14988.	3.7	11
39	DNA-directed arrangement of soft synthetic compartments and their behavior <i>in vitro</i> and <i>in vivo</i> . Nanoscale, 2020, 12, 9786-9799.	5.6	11
40	Lipid nanoparticle-mediated silencing of osteogenic suppressor GNAS leads to osteogenic differentiation of mesenchymal stem cells inÂvivo. Molecular Therapy, 2022, 30, 3034-3051.	8.2	10
41	Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries. Molecular Pharmaceutics, 2016, 13, 2290-2300.	4.6	9
42	Improvement of DNA Vector Delivery of DOTAP Lipoplexes by Short-Chain Aminolipids. ACS Omega, 2020, 5, 24724-24732.	3.5	8
43	Altering the intra-liver distribution of phospholipid-free small unilamellar vesicles using temperature-dependent size-tunability. Journal of Controlled Release, 2021, 333, 151-161.	9.9	8
44	Isolation of multiantennary N-glycans from glycoproteins for hepatocyte specific targeting via the asialoglycoprotein receptor. RSC Advances, 2016, 6, 97636-97640.	3.6	7
45	FAM13A as potential therapeutic target in modulating TGF- \hat{l}^2 -induced airway tissue remodeling in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L377-L391.	2.9	7
46	Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma. Journal of Controlled Release, 2021, 334, 138-152.	9.9	3
47	Improved Liver Delivery of Primaquine by Phospholipid-Free Small Unilamellar Vesicles with Reduced Hemolytic Toxicity. Molecular Pharmaceutics, 2022, 19, 1778-1785.	4.6	3
48	Physicochemical and biopharmaceutical characterization of novel Matrix-Liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 158-167.	4.3	2
49	Virus-Derived Peptides for Hepatic Enzyme Delivery. Molecular Pharmaceutics, 2021, 18, 2004-2014.	4.6	1