
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317997/publications.pdf Version: 2024-02-01

ALLE MELLE MINK

#	Article	IF	CITATIONS
1	Spatial-Temporal Patterns of \hat{l}^2 -Amyloid Accumulation. Neurology, 2022, 98, .	1.1	40
2	Regional associations of white matter hyperintensities and early cortical amyloid pathology. Brain Communications, 2022, 4, .	3.3	9
3	The Open-Access European Prevention of Alzheimer's Dementia (EPAD) MRI dataset and processing workflow. NeuroImage: Clinical, 2022, 35, 103106.	2.7	9
4	The sequence of structural, functional and cognitive changes in multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102550.	2.7	21
5	Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 173-184.	10.1	46
6	White matter microstructure disruption in early stage amyloid pathology. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12124.	2.4	16
7	Regional amyloid accumulation predicts memory decline in initially cognitively unimpaired individuals. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12216.	2.4	7
8	Visual assessment of [18F]flutemetamol PET images can detect early amyloid pathology and grade its extent. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2169-2182.	6.4	24
9	Application of the ATN classification scheme in a population without dementia: Findings from the EPAD cohort. Alzheimer's and Dementia, 2021, 17, 1189-1204.	0.8	44
10	Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis. Neurology, 2021, 97, e794-e802.	1.1	19
11	Amyloid-driven disruption of default mode network connectivity in cognitively healthy individuals. Brain Communications, 2021, 3, fcab201.	3.3	14
12	Prediction of amyloid pathology in cognitively unimpaired individuals using structural MRI. Alzheimer's and Dementia, 2021, 17, .	0.8	0
13	Automatic brain extraction using deep learning. Alzheimer's and Dementia, 2021, 17, .	0.8	0
14	Regional amyloid accumulation predicts memory decline in initially cognitively unimpaired individuals. Alzheimer's and Dementia, 2021, 17, .	0.8	0
15	Dataâ€driven evidence for three distinct patterns of amyloidâ€Î² accumulation. Alzheimer's and Dementia, 2021, 17, .	0.8	2
16	Neuroimagingâ€derived phenotypes in the European Prevention of Alzheimer Dementia (EPAD) Cohort Study. Alzheimer's and Dementia, 2021, 17, .	0.8	0
17	Differential gray matter connectivity correlates of CSF biomarkers: Results from the EPAD Cohort. Alzheimer's and Dementia, 2021, 17, .	0.8	0
18	Multitracer model for staging cortical amyloid deposition using PET imaging. Neurology, 2020, 95, e1553.	1.1	55

#	Article	IF	CITATIONS
19	Operationalization of the ATN classification scheme in preclinical AD: Findings from EPAD V500.0 data release. Alzheimer's and Dementia, 2020, 16, e037912.	0.8	0
20	ExploreQC: A toolbox for MRI quality control in the EPAD multicentre study. Alzheimer's and Dementia, 2020, 16, e041952.	0.8	0
21	Examining centiloid quantification against visual assessment using [18F]flutemetamol PET. Alzheimer's and Dementia, 2020, 16, e042653.	0.8	Ο
22	Amyloidâ€dependent association of grey matter network disruptions with phosphoâ€ŧau in preclinical Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e044739.	0.8	0
23	ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies. NeuroImage, 2020, 219, 117031.	4.2	80
24	Quantitative amyloid PET in Alzheimer's disease: the AMYPAD prognostic and natural history study. Alzheimer's and Dementia, 2020, 16, 750-758.	0.8	29
25	White matter integrity disruption in early amyloid accumulators. Alzheimer's and Dementia, 2020, 16, e043021.	0.8	0
26	Eigenvector Centrality Dynamics From Resting-State fMRI: Gender and Age Differences in Healthy Subjects. Frontiers in Neuroscience, 2019, 13, 648.	2.8	19
27	Cognitive reserve and clinical progression in Alzheimer disease. Neurology, 2019, 93, e334-e346.	1.1	85
28	Functional Network Dynamics on Functional MRI: A Primer on an Emerging Frontier in Neuroscience. Radiology, 2019, 292, 460-463.	7.3	4
29	Reduced Network Dynamics on Functional MRI Signals Cognitive Impairment in Multiple Sclerosis. Radiology, 2019, 292, 449-457.	7.3	51
30	Assessing Amyloid Pathology in Cognitively Normal Subjects Using ¹⁸ F-Flutemetamol PET: Comparing Visual Reads and Quantitative Methods. Journal of Nuclear Medicine, 2019, 60, 541-547.	5.0	47
31	An exploratory clinical study of p38 <i>α</i> kinase inhibition in Alzheimer's disease. Annals of Clinical and Translational Neurology, 2018, 5, 464-473.	3.7	43
32	Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging. Journal of Alzheimer's Disease, 2018, 62, 1827-1839.	2.6	33
33	P3â€342: INFLUENCE OF NETWORK CONSTRUCTION METHODS ON PATH LENGTH VALUES IN ALZHEIMER'S DISEASE: A MULTI TUDY ANALYSIS OF MRI CONNECTIVITY STUDIES. Alzheimer's and Dementia, 2018, 14, P1214.	0.8	0
34	ICâ€Pâ€032: INFLUENCE OF NETWORK CONSTRUCTION METHODS ON PATH LENGTH VALUES IN ALZHEIMER'S DISEASE: A MULTIâ€6TUDY ANALYSIS OF MRI CONNECTIVITY STUDIES. Alzheimer's and Dementia, 2018, 14, P36.	0.8	0
35	ICâ€Pâ€192: DISEASE‧TAGE SPECIFIC RELATIONSHIP BETWEEN COGNITIVE RESERVE AND CLINICAL PROGRESS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P158.	510N 0.8	2
36	F5â€05â€04: THE USE OF RESIDUAL METHODS TO CAPTURE COGNITIVE RESERVE AND STUDY CLINICAL PROGRESSION IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1633.	0.8	0

#	Article	IF	CITATIONS
37	P1â€467: DISEASE TAGE–SPECIFIC RELATIONSHIP BETWEEN COGNITIVE RESERVE AND CLINICAL PROGRESS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P500.	10 <u>N</u>	0
38	O2â€09â€05: EXTENSION AND VALIDATION OF AN AMYLOID STAGING MODEL: ASSOCIATIONS WITH CLINICAL MEASURES. Alzheimer's and Dementia, 2018, 14, P643.	0.8	0
39	ICâ€Pâ€005: ASSESSMENT OF EARLY AMYLOID PATHOLOGY USING [¹⁸ F]FLUTEMETAMOL POSITRO EMISSION TOMOGRAPHY: COMPARING VISUAL READ, SEMIâ€QUANTITATIVE AND QUANTITATIVE METHODS. Alzheimer's and Dementia, 2018, 14, P16.	N 0.8	0
40	P3â€355: ASSESSMENT OF EARLY AMYLOID PATHOLOGY USING [¹⁸ F]FLUTEMETAMOL POSITRON EMISSION TOMOGRAPHY: COMPARING VISUAL READ, SEMIâ€QUANTITATIVE AND QUANTITATIVE METHODS. Alzheimer's and Dementia, 2018, 14, P1221.	0.8	0
41	Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer's disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimer's Research and Therapy, 2018, 10, 107.	6.2	80
42	Functional brain network centrality is related to APOE genotype in cognitively normal elderly. Brain and Behavior, 2018, 8, e01080.	2.2	18
43	Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology, 2017, 88, 952-960.	1.1	91
44	Altered eigenvector centrality is related to local restingâ€state network functional connectivity in patients with longstanding type 1 diabetes mellitus. Human Brain Mapping, 2017, 38, 3623-3636.	3.6	33
45	A neuroimaging approach to capture cognitive reserve: Application to Alzheimer's disease. Human Brain Mapping, 2017, 38, 4703-4715.	3.6	59
46	[ICâ€Pâ€130]: MRIâ€BASED CLASSIFICATION ACCURACY OF DEMENTIA TYPE IS DETERMINED BY MRI MODALITY. Alzheimer's and Dementia, 2017, 13, P98.	0.8	0
47	[P1–392]: AUTOMATED SELECTION OF MULTIMODAL MRI BIOMARKERS FOR DIAGNOSIS OF DEMENTIA. Alzheimer's and Dementia, 2017, 13, P417.	0.8	0
48	[ICâ€Pâ€106]: PREDICTING PROGRESSION IN PREâ€DEMENTIA STAGES OF ALZHEIMER's DISEASE WITH A NEUROIMAGING MEASURE OF COGNITIVE RESERVE. Alzheimer's and Dementia, 2017, 13, P81.	0.8	0
49	[O2–11–03]: PREDICTING PROGRESSION IN PREâ€DEMENTIA STAGES OF ALZHEIMER's DISEASE WITH A NEUROIMAGING MEASURE OF COGNITIVE RESERVE. Alzheimer's and Dementia, 2017, 13, P581.	0.8	0
50	Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease. Radiology, 2016, 281, 865-875.	7.3	58
51	P1-327: Cross-Sectional Modeling of Regional Perfusion and Gray Matter Volume in Alzheimer's Disease. , 2016, 12, P552-P553.		0
52	ICâ€Pâ€097: A Novel Neuroimaging Approach to Capture Cognitive Reserve. Alzheimer's and Dementia, 2016, 12, P74.	0.8	0
53	ICâ€Pâ€106: Cross‣ectional Modeling of Regional Perfusion and Gray Matter Volume in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P80.	0.8	0
54	P4â€191: A Novel Neuroimaging Approach to Capture Cognitive Reserve. Alzheimer's and Dementia, 2016, 12, P1095.	0.8	0

#	Article	IF	CITATIONS
55	Impact of APOE-ɛ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. Neurobiology of Aging, 2016, 38, 14-20.	3.1	37
56	Alzheimer Disease and Behavioral Variant Frontotemporal Dementia: Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis. Radiology, 2016, 279, 838-848.	7.3	79
57	Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain, 2016, 139, 115-126.	7.6	223
58	Gray matter network disruptions and amyloid beta in cognitively normal adults. Neurobiology of Aging, 2016, 37, 154-160.	3.1	51
59	The Association of Clucose Metabolism and Eigenvector Centrality in Alzheimer's Disease. Brain Connectivity, 2016, 6, 1-8.	1.7	18
60	IC-P-124: Classification of resting-state cerebral perfusion maps from patients with Alzheimer's disease and patients with frontotemporal dementia. , 2015, 11, P85-P85.		0
61	IC-04-03: Grey matter network disruptions are related to amyloid-beta in cognitively healthy elderly. , 2015, 11, P11-P11.		Ο
62	IC-P-108: Impact of ApoE-Æ4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. , 2015, 11, P73-P73.		0
63	O2-09-01: Impact of ApoE-É>4 and family history of dementia on gray matter atrophy in cognitively healthy middle-aged adults. , 2015, 11, P194-P194.		0
64	Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology, 2015, 84, 776-783.	1.1	180
65	Widespread Disruption of Functional Brain Organization in Early-Onset Alzheimer's Disease. PLoS ONE, 2014, 9, e102995.	2.5	56
66	Amyloid and its association with default network integrity in Alzheimer's disease. Human Brain Mapping, 2014, 35, 779-791.	3.6	37
67	Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1058-1065.	3.0	69
68	Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Human Brain Mapping, 2014, 35, 2383-2393.	3.6	108
69	P1-233: MULTIMODAL BRAIN NETWORK ALTERATIONS IN ALZHEIMER'S DISEASE AND MILD COGNITIVE IMPAIRMENT PATIENTS. , 2014, 10, P389-P390.		0
70	Longitudinal Changes in Total Brain Volume in Schizophrenia: Relation to Symptom Severity, Cognition and Antipsychotic Medication. PLoS ONE, 2014, 9, e101689.	2.5	92
71	Alzheimer's disease: connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 2013, 34, 2023-2036.	3.1	355
72	Cerebral Blood Flow Measured with 3D Pseudocontinuous Arterial Spin-labeling MR Imaging in Alzheimer Disease and Mild Cognitive Impairment: A Marker for Disease Severity. Radiology, 2013, 267, 221-230.	7.3	206

#	Article	IF	CITATIONS
73	Single-Subject Grey Matter Graphs in Alzheimer's Disease. PLoS ONE, 2013, 8, e58921.	2.5	107
74	Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2012, 33, 2018-2028.	3.1	337
75	Fast Eigenvector Centrality Mapping of Voxel-Wise Connectivity in Functional Magnetic Resonance Imaging: Implementation, Validation, and Interpretation. Brain Connectivity, 2012, 2, 265-274.	1.7	105
76	Restingâ€state networks in awake five―to eightâ€year old children. Human Brain Mapping, 2012, 33, 1189-12	013.6	131
77	Executive Functions and Prefrontal Cortex: A Matter of Persistence?. Frontiers in Systems Neuroscience, 2011, 5, 3.	2.5	36
78	Polyphase decompositions and shift-invariant discrete wavelet transforms in the frequency domain. Signal Processing, 2010, 90, 1779-1787.	3.7	10
79	CamBAfx: Workflow design, implementation and application for neuroimaging. Frontiers in Neuroinformatics, 2009, 3, 27.	2.5	3
80	Aripiprazole and sulpiride have differenzial effects on working memory performance and brain activity in patients with schizophrenia and healthy controls. Pharmacopsychiatry, 2009, 42, .	3.3	0
81	Data-driven haemodynamic response function extraction using Fourier-wavelet regularised deconvolution. BMC Medical Imaging, 2008, 8, 7.	2.7	17
82	Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Human Brain Mapping, 2008, 29, 791-801.	3.6	127
83	Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. Journal of Neuroscience Methods, 2008, 174, 292-300.	2.5	96
84	Modulation of the fractal properties of low frequency endogenous brain oscillations in functional MRI by a working memory task , 2008, , .		0
85	Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiology of Aging, 2006, 27, 1395-1404.	3.1	104
86	BOLD Noise Assumptions in fMRI. International Journal of Biomedical Imaging, 2006, 2006, 1-11.	3.9	31
87	Permutation testing of orthogonal factorial effects in a language-processing experiment using fMRI. Human Brain Mapping, 2006, 27, 425-433.	3.6	31
88	A Review of Wavelet Denoising in MRI and Ultrasound Brain Imaging. Current Medical Imaging, 2006, 2, 247-260.	0.8	100
89	Denoising Functional MR Images: A Comparison of Wavelet Denoising and Gaussian Smoothing. IEEE Transactions on Medical Imaging, 2004, 23, 374-387.	8.9	204
90	The effect of image enhancement on the statistical analysis of functional neuroimages: wavelet-based denoising and Gaussian smoothing. , 2003, , .		2