R Toby Pennington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317660/publications.pdf

Version: 2024-02-01

30070 22166 14,493 151 54 113 citations h-index g-index papers 158 158 158 12376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguesia, 2015, 66, 1085-1113.	0.9	1,032
2	Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 2000, 27, 261-273.	3.0	907
3	A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 2017, 66, 44-77.	0.7	803
4	Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20359-20364.	7.1	783
5	Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science, 2001, 293, 2242-2245.	12.6	710
6	Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 437-457.	8.3	573
7	Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 2016, 353, 1383-1387.	12.6	490
8	Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 515-538.	4.0	385
9	Selecting barcoding loci for plants: evaluation of seven candidate loci with speciesâ€level sampling in three divergent groups of land plants. Molecular Ecology Resources, 2009, 9, 439-457.	4.8	344
10	Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species–rich clades. Taxon, 2013, 62, 217-248.	0.7	305
11	The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus <i>Inga</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18073-18078.	7.1	277
12	Neotropical Plant Evolution: Assembling the Big Picture. Botanical Journal of the Linnean Society, 2013, 171, 1-18.	1.6	251
13	The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. American Journal of Botany, 2001, 88, 503-533.	1.7	222
14	Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 2012, 173, 711-723.	1.3	216
15	Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13783-13787.	7.1	191
16	Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany, 2013, 89, 58-75.	2.5	189
17	An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12017-12020.	7.1	188
18	Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled earlyâ€branching lineages. American Journal of Botany, 2012, 99, 1991-2013.	1.7	187

#	Article	IF	CITATIONS
19	The role of immigrants in the assembly of the South American rainforest tree flora. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1611-1622.	4.0	186
20	Insights into the historical construction of speciesâ€rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytologist, 2006, 172, 605-616.	7.3	186
21	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
22	Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 2012, 39, 884-900.	3.0	178
23	Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evolutionary Biology, 2012, 12, 250.	3.2	164
24	Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1509-1522.	4.0	156
25	Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Science, 2015, 6, 710.	3.6	147
26	Tropical savannas and dry forests. Current Biology, 2018, 28, R541-R545.	3.9	138
27	A Phylogenomic Investigation of CYCLOIDEA-Like TCP Genes in the Leguminosae. Plant Physiology, 2003, 131, 1042-1053.	4.8	132
28	Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7499-E7505.	7.1	123
29	The history of Seasonally Dry Tropical Forests in eastern South America: inferences from the genetic structure of the tree <i>Astronium urundeuva</i> (Anacardiaceae). Molecular Ecology, 2008, 17, 3147-3159.	3.9	119
30	A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307, 177-192.	2.3	117
31	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
32	Neotropical Seasonally Dry Forests: Diversity, Endemism, and Biogeography of Woody Plants. , 2011, , 3-21.		108
33	The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytologist, 2016, 210, 25-37.	7.3	108
34	Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2645-2650.	7.1	103
35	Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	101
36	Dissecting a biodiversity hotspot: The importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Diversity and Distributions, 2017, 23, 898-909.	4.1	99

#	Article	IF	CITATIONS
37	Systematics and biogeography of <i>Lathyrus </i> (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. American Journal of Botany, 2005, 92, 1199-1209.	1.7	98
38	The Great American Biotic Interchange revisited. Ecography, 2010, 33, 326-332.	4.5	98
39	The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. Journal of Ecology, 2018, 106, 2109-2120.	4.0	96
40	Africa, the Odd Man Out: Molecular Biogeography of Dalbergioid Legumes (Fabaceae) Suggests Otherwise. Systematic Botany, 2000, 25, 449.	0.5	94
41	Largeâ€scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a nearâ€simultaneous evolutionary origin of all six subfamilies. New Phytologist, 2020, 225, 1355-1369.	7.3	94
42	Pleistocene and pre-Pleistocene Begonia speciation in Africa. Molecular Phylogenetics and Evolution, 2004, 31, 449-461.	2.7	85
43	Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon, 2013, 62, 249-266.	0.7	85
44	Introduction and synthesis: plant phylogeny and the origin of major biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1455-1464.	4.0	83
45	Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography, 2017, 40, 403-414.	4.5	83
46	The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous–Paleogene (K–Pg) Mass Extinction Event. Systematic Biology, 2021, 70, 508-526.	5.6	83
47	Campos de Cima da Serra: the Brazilian Subtropical Highland Grasslands show an unexpected level of plant endemism. Botanical Journal of the Linnean Society, 2011, 167, 378-393.	1.6	82
48	Environmental and historical controls of floristic composition across the South American Dry Diagonal. Journal of Biogeography, 2015, 42, 1566-1576.	3.0	75
49	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
50	SHORT COMMUNICATION: Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Molecular Ecology, 2005, 14, 497-501.	3.9	70
51	Legume comparative genomics: progress in phylogenetics and phylogenomics. Current Opinion in Plant Biology, 2006, 9, 99-103.	7.1	70
52	Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Global Ecology and Biogeography, 2018, 27, 899-912.	5.8	69
53	The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 2022, 27, 364-378.	8.8	67
54	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63

#	Article	IF	Citations
55	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
56	The Origins of Tropical Rainforest Hyperdiversity. Trends in Plant Science, 2015, 20, 693-695.	8.8	60
57	The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change. Science, 2011, 331, 1055-1058.	12.6	57
58	Underestimated endemic species diversity in the dry interâ€Andean valley of the RÃo Marañón, northern Peru: An example from <i>Mimosa</i> (Leguminosae, Mimosoideae). Taxon, 2011, 60, 139-150.	0.7	57
59	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	12.6	57
60	DIVERGENT DEFENSIVE STRATEGIES OF YOUNG LEAVES IN TWO SPECIES OF INGA. Ecology, 2005, 86, 2633-2643.	3.2	56
61	An Overview of the Plant Diversity, Biogeography and Conservation of Neotropical Savannas and Seasonally Dry Forests. Systematics Association Special Volume, 2006, , 1-29.	0.2	56
62	Phylogenetic Relationships within the Subfamily Sterculioideae (Malvaceae/Sterculiaceae-Sterculieae) Using the Chloroplast Gene <i>ndhF</i> . Systematic Botany, 2006, 31, 160-170.	0.5	54
63	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
64	Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends in Ecology and Evolution, 2017, 32, 258-267.	8.7	52
65	Towards a new classification system for legumes: Progress report from the 6th International Legume Conference. South African Journal of Botany, 2013, 89, 3-9.	2.5	51
66	The remarkable congruence of New and Old World savanna origins. New Phytologist, 2014, 204, 4-6.	7.3	51
67	Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation. American Journal of Botany, 2020, 107, 1710-1735.	1.7	51
68	First molecular phylogeny of the pantropical genus Dalbergia: implications for infrageneric circumscription and biogeography. South African Journal of Botany, 2013, 89, 143-149.	2.5	50
69	Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 2020, 6, eaaz5373.	10.3	50
70	Recent oceanic long-distance dispersal and divergence in the amphi-Atlantic rain forest genus Renealmia L.f. (Zingiberaceae). Molecular Phylogenetics and Evolution, 2007, 44, 968-980.	2.7	49
71	Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences, 2009, 6, 2719-2731.	3.3	49
72	Stability structures tropical woody plant diversity more than seasonality: Insights into the ecology of high legume-succulent-plant biodiversity. South African Journal of Botany, 2013, 89, 42-57.	2.5	47

#	Article	IF	CITATIONS
73	Molecular and Morphological Data Provide Phylogenetic Resolution at Different Hierarchical Levels in Andira. Systematic Biology, 1996, 45, 496-515.	5. 6	44
74	Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodiversity and Conservation, 2020, 29, 1477-1500.	2.6	44
7 5	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
76	Biogeographic Barriers in the Andes: Is the Amotapeâ€"Huancabamba Zone a Dispersal Barrier for Dry Forest Plants?. Annals of the Missouri Botanical Garden, 2017, 102, 542-550.	1.3	43
77	Lack of floristic identity in campos rupestres —A hyperdiverse mosaic of rocky montane savannas in South America. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 24-31.	1.2	43
78	Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Scientific Reports, 2020, 10, 1188.	3.3	41
79	Monograph of Andira (Leguminosae-Papilionoideae). Systematic Botany Monographs, 2003, 64, 1.	1.2	39
80	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 2011, 86, 457-474.	10.4	39
81	Filling in the gaps of the papilionoid legume phylogeny: The enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade. Molecular Phylogenetics and Evolution, 2015, 84, 112-124.	2.7	39
82	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	4.0	38
83	The realignment of <i>Acosmium</i> sensu stricto with the Dalbergioid clade (Leguminosae:) Tj ETQq1 1 0.78431 earlyÂbranching papilionoid legumes. Taxon, 2012, 61, 1057-1073.	4 rgBT /Ov 0.7	
84	History and Geography of Neotropical Tree Diversity. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 279-301.	8.3	37
85	The Unintended Impact of Colombia's Covid-19 Lockdown on Forest Fires. Environmental and Resource Economics, 2020, 76, 1081-1105.	3.2	37
86	Origins and genetic conservation of tropical trees in agroforestry systems: a case study from the Peruvian Amazon. Conservation Genetics, 2008, 9, 361-372.	1.5	36
87	Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology, 2011, 164, 223-237.	1.5	34
88	Amazonian Whiteâ€Sand Forests Show Strong Floristic Links with Surrounding Oligotrophic Habitats and the Guiana Shield. Biotropica, 2016, 48, 47-57.	1.6	34
89	Geographical variation in the evolutionary diversity of tree communities across southern South America. Journal of Biogeography, 2017, 44, 2365-2375.	3.0	32
90	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32

#	Article	IF	CITATIONS
91	The Bowdichia clade of Genistoid legumes: Phylogenetic analysis of combined molecular and morphological data and a recircumscription of <i>Diplotropis</i> . Taxon, 2012, 61, 1074-1087.	0.7	31
92	Revision and Biogeography of <i>Centrolobium</i> (Leguminosae - Papilionoideae). Systematic Botany, 2009, 34, 345-359.	0.5	30
93	Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae). Alpine Botany, 2017, 127, 155-170.	2.4	29
94	Amazon vegetation: how much don't we know and how much does it matter?. Kew Bulletin, 2010, 65, 691-709.	0.9	28
95	Quinolizidine alkaloid status of Styphnolobium and Cladrastis (Leguminosae). Biochemical Systematics and Ecology, 2003, 31, 1409-1416.	1.3	26
96	Transitions between biomes are common and directional in Bombacoideae (Malvaceae). Journal of Biogeography, 2020, 47, 1310-1321.	3.0	26
97	Hybridization: a  double-edged sword' for Neotropical plant diversity. Botanical Journal of the Linnean Society, 2022, 199, 331-356.	1.6	26
98	Climatic Change and Seasonally Dry Tropical Forests. , 2011, , 279-299.		25
99	<i>Ficus insipida</i> subsp. <i>insipida</i> (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. Journal of Biogeography, 2014, 41, 1697-1709.	3.0	25
100	Chemocoding as an identification tool where morphological―and <scp>DNA</scp> â€based methods fall short: <i>lnga</i>) as a case study. New Phytologist, 2018, 218, 847-858.	7.3	25
101	Introgression across evolutionary scales suggests reticulation contributes to Amazonian tree diversity. Molecular Ecology, 2020, 29, 4170-4185.	3.9	23
102	A REVISION OF BERBERIS S.S. (BERBERIDACEAE) IN NEPAL. Edinburgh Journal of Botany, 2012, 69, 447-522.	0.4	22
103	The recent and rapid spread of <i>Themeda triandra</i> . Botany Letters, 2017, 164, 327-337.	1.4	22
104	Shade alters savanna grass layer structure and function along a gradient of canopy cover. Journal of Vegetation Science, 2021, 32, .	2.2	22
105	Macroevolutionary patterns in overexpression of tyrosine: An antiâ€herbivore defence in a speciose tropical tree genus, <i>lnga</i> (Fabaceae). Journal of Ecology, 2019, 107, 1620-1632.	4.0	21
106	On the floristic identity of Amazonian vegetation types. Biotropica, 2021, 53, 767-777.	1.6	21
107	<i>Poissonia eriantha</i> (Leguminosae) From Cuzco, Peru: An Overlooked Species Underscores a Pattern of Narrow Endemism Common to Seasonally Dry Neotropical Vegetation. Systematic Botany, 2011, 36, 59-68.	0.5	20
108	DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveals Geographically Localized Clades Here Ranked as Species. Systematic Botany, 2018, 43, 664-675.	0.5	20

#	Article	IF	CITATIONS
109	Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae). Frontiers in Plant Science, 2018, 9, 1237.	3.6	19
110	Systematics and biogeography of <i>Berberis</i> s.l. inferred from nuclear ITS and chloroplast <i>ndhF</i> gene sequences. Taxon, 2015, 64, 39-48.	0.7	18
111	Fine-scale variation in topography and seasonality determine radial growth of an endangered tree in Brazilian Atlantic forest. Plant and Soil, 2016, 403, 115-128.	3.7	18
112	Taxonomic Account of Hemigraphis Nees (Strobilanthinae-Acanthaceae) from the Philippines. Kew Bulletin, 2002, 57, 769.	0.9	17
113	Assembly of tropical plant diversity on a local scale: Cyrtandra (Gesneriaceae) on Mount Kerinci, Sumatra. Biological Journal of the Linnean Society, 2004, 81, 49-62.	1.6	17
114	Biogeographical, ecological and morphological structure in a phylogenetic analysis of Ateleia (Swartzieae, Fabaceae) derived from combined molecular, morphological and chemical data. Botanical Journal of the Linnean Society, 2010, 162, 39-53.	1.6	17
115	Diversification history of Adesmia ser. psoraleoides (Leguminosae): Evolutionary processes and the colonization of the southern Brazilian highland grasslands. South African Journal of Botany, 2013, 89, 257-264.	2.5	16
116	Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and temperature changes over glacial–interglacial timescales. Vegetation History and Archaeobotany, 2014, 23, 1-14.	2.1	16
117	Quantifying Tropical Plant Diversity Requires an Integrated Technological Approach. Trends in Ecology and Evolution, 2020, 35, 1100-1109.	8.7	16
118	Genetic and Ecological Outcomes of Inga vera Subsp. affinis (Leguminosae) Tree Plantations in a Fragmented Tropical Landscape. PLoS ONE, 2014, 9, e99903.	2.5	15
119	Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo). PLoS ONE, 2017, 12, e0185861.	2.5	15
120	Taxonomic Revision of Garcinia Section Garcinia (Clusiaceae). Phytotaxa, 2018, 373, 1.	0.3	15
121	The role of plant secondary metabolites in shaping regional and local plant community assembly. Journal of Ecology, 2022, 110, 34-45.	4.0	15
122	Comparative phylogeography of five widespread tree species: Insights into the history of western Amazonia. Ecology and Evolution, 2019, 9, 7333-7345.	1.9	13
123	Cladistic analysis of chloroplast DNA restriction site characters in Andira (Leguminosae:) Tj ETQq1 1 0.784314 rş	gBT ₁ /Overlo	ock 10 Tf 50
124	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
125	The Origins and Historical Assembly of the Brazilian Caatinga Seasonally Dry Tropical Forests. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	12
126	Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393, 76-89.	2.3	11

#	Article	IF	Citations
127	The floral scent of Cyathostegia mathewsii (Leguminosae, Papilionoideae) and preliminary observations on reproductive biology. Biochemical Systematics and Ecology, 2003, 31, 951-962.	1.3	10
128	Editorial: Origin of Tropical Diversity: From Clades to Communities. Frontiers in Genetics, 2016, 7, 186.	2.3	10
129	A dated molecular phylogeny and biogeographical analysis reveals the evolutionary history of the trans-pacifically disjunct tropical tree genus Ormosia (Fabaceae). Molecular Phylogenetics and Evolution, 2022, 166, 107329.	2.7	10
130	Ancient speciation of the papilionoid legume <i>Luetzelburgia jacana</i> , a newly discovered species in an interâ€Andean seasonally dry valley of Colombia. Taxon, 2018, 67, 931-943.	0.7	9
131	Two New Species of Andira (Leguminosae) from Brazil and the Influence of Dispersal in Determining Their Distributions. Kew Bulletin, 1995, 50, 557.	0.9	8
132	Recent colonization of the Gal \tilde{A}_i pagos by the tree <i>Geoffroea spinosa</i> Jacq. (Leguminosae). Molecular Ecology, 2012, 21, 2743-2760.	3.9	8
133	Response to Comment on "The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change― Science, 2011, 333, 1825-1825.	12.6	7
134	Forest conservation: Remember Gran Chacoâ€"Response. Science, 2017, 355, 465-466.	12.6	7
135	Cryptic clades, fruit wall morphology and biology of (Leguminosae: Papilionoideae). Botanical Journal of the Linnean Society, 2000, 134, 267-286.	1.6	6
136	The strengths and weaknesses of species distribution models in biome delimitation. Global Ecology and Biogeography, 2020, 29, 1770-1784.	5.8	6
137	Cladistic Analysis of Chloroplast DNA Restriction Site Characters in Andira (Leguminosae:) Tj ETQq1 1 0.784314	rgBT/Ove	rlogk 10 Tf 5
138	Defining Biologically Meaningful Biomes Through Floristic, Functional, and Phylogenetic Data. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
139	Development and characterization of 11 microsatellite markers in a widespread Neotropical seasonally dry forest tree species, Geoffroea spinosa Jacq. (Leguminosae). Molecular Ecology Notes, 2005, 5, 542-545.	1.7	5
140	Exploring evolutionarily meaningful vegetation definitions in the tropics: a community phylogenetic approach., 2014,, 239-260.		3
141	Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest. Molecular Ecology, 2017, 26, 3327-3329.	3.9	3
142	Andean orogeny and the diversification of lowland neotropical rain forest trees: A case study in Sapotaceae. Global and Planetary Change, 2021, 201, 103481.	3.5	3
143	A New Species of Andira (Leguminosae, Papilionoideae) from the Venezuelan Guayana. Novon, 1997, 7, 72.	0.3	1
144	(1533) Proposal to Change the Authorship of Andira, nom. cons. (Leguminosae-Papilionoideae) and to Conserve It with a Conserved Type. Taxon, 2002, 51, 385.	0.7	1

#	Article	IF	Citations
145	Molecular systematic perspectives on biome origins and dynamics. New Phytologist, 2012, 193, 9-11.	7.3	1
146	STUDIES IN THE FLORA OF ARABIA: XXX. A SYNOPSIS OF THE NATIVE AND NATURALISED SPECIES OF SENNA (LEGUMINOSAE: CAESALPINIOIDEAE) IN THE ARABIAN PENINSULA. Edinburgh Journal of Botany, 2014, 71, 117-132.	0.4	1
147	Plants, people and longâ€ŧerm ecological monitoring in the tropics. Plants People Planet, 2021, 3, 222-228.	3.3	1
148	The seasonally dry tropical forest species Cavanillesia chicamochae has a middle Quaternary origin. Biotropica, 0, , .	1.6	1
149	Forest conservation: Humans' handprintsâ€"Response. Science, 2017, 355, 467-467.	12.6	0
150	877. ANDIRA ANTHELMIA. Curtis's Botanical Magazine, 2018, 35, 125-133.	0.3	0
151	Leguminosae tree species diversity in coastal forests of Rio de Janeiro, Brazil. Biota Neotropica, 2021, 21, .	0.5	0