
Peter Kollar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317313/publications.pdf Version: 2024-02-01

DETED KOLLAD

#	Article	IF	CITATIONS
1	Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method. Journal of Magnetism and Magnetic Materials, 2022, 543, 168640.	2.3	22
2	Eco-friendly soft magnetic composites of iron coated by sintered ferrite via mechanofusion. Journal of Magnetism and Magnetic Materials, 2022, 543, 168627.	2.3	14
3	Energy loss separation in NiFeMo compacts with smoothed powders according to Landgraf's and Bertotti's theories. Journal of Materials Science, 2021, 56, 12835-12844.	3.7	7
4	Impact of particles surface smoothing on DC permeability of NiFeMo soft magnetic powder compacts. Journal of Magnetism and Magnetic Materials, 2021, 538, 168298.	2.3	1
5	Influence of inner demagnetizing field on energy loss in nifemo compacted powder. AIP Conference Proceedings, 2021, , .	0.4	1
6	Analysis of selected magnetic properties of Fe-Co powdered compacts. AIP Conference Proceedings, 2021, , .	0.4	0
7	Correlation between Cutting Clearance, Deformation Texture, and Magnetic Loss Prediction in Non-Oriented Electrical Steels. Materials, 2021, 14, 6893.	2.9	8
8	Iron Based Soft Magnetic Composite Material Prepared By Injection Molding. Powder Metallurgy Progress, 2021, 21, 10-17.	0.1	0
9	Influence of the Ferromagnetic Component on the Magnetic Properties of Polymer-Matrix Soft Magnetic Composites. Powder Metallurgy Progress, 2021, 21, 1-9.	0.1	0
10	Preparation and magnetic properties of NiFeMo powdered compacts of powder elements with smoothed surfaces. Journal of Magnetism and Magnetic Materials, 2020, 494, 165770.	2.3	14
11	Mechanical surface smoothing of micron-sized iron powder for improved silica coating performance as soft magnetic composites. Applied Surface Science, 2020, 531, 147340.	6.1	22
12	Preparation and characterization of iron-based soft magnetic composites with resin bonded nano-ferrite insulation. Journal of Alloys and Compounds, 2020, 828, 154416.	5.5	30
13	Magnetic properties of selected Fe-based soft magnetic composites interpreted in terms of Jiles-Atherton model parameters. Journal of Magnetism and Magnetic Materials, 2020, 502, 166514.	2.3	25
14	Evolution of Power Losses in Bending Rolled Fully Finished NO Electrical Steel Treated under Unconventional Annealing Conditions. Materials, 2019, 12, 2200.	2.9	3
15	Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded Ni-Zn ferrite nanofibres. Journal of Magnetism and Magnetic Materials, 2019, 485, 1-7.	2.3	37
16	Reversible and irreversible magnetization processes along DC hysteresis loops of Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2019, 483, 183-190.	2.3	14
17	Magnetic losses reduction in grain oriented silicon steel by pulse and continuous fiber laser processing. AIP Advances, 2018, 8, .	1.3	9
18	Magnetic properties of FeNiMo compacted powder. AIP Conference Proceedings, 2018, , .	0.4	1

Peter Kollar

#	Article	IF	CITATIONS
19	Irreversible permeability and DC losses relationship for selected soft magnetic materials. Journal Physics D: Applied Physics, 2018, 51, 395002.	2.8	9
20	A comprehensive complex permeability approach to soft magnetic bulk cores from pure or resin coated Fe and pulverized alloys at elevated temperatures. Journal of Alloys and Compounds, 2017, 695, 1998-2007.	5.5	26
21	Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2017, 424, 245-250.	2.3	45
22	Temperature evolution of broadband magnetization behavior in dual-phase soft magnetic compacted materials. Materials and Design, 2017, 114, 383-390.	7.0	7
23	Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material. Journal of Magnetism and Magnetic Materials, 2017, 423, 140-144.	2.3	13
24	Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2017, 426, 320-327.	2.3	37
25	Energy Losses in Composite Materials Based on Two Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	8
26	Broadband magnetic losses of nanocrystalline ribbons and powder cores. Journal of Magnetism and Magnetic Materials, 2016, 420, 317-323.	2.3	22
27	Magnetization dynamics of FeCuNbSiB soft magnetic ribbons and derived powder cores. Journal of Alloys and Compounds, 2015, 628, 335-342.	5.5	34
28	A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins. Chinese Journal of Chemical Engineering, 2015, 23, 736-743.	3.5	37
29	Reversible and irreversible DC magnetization processes in the frame of magnetic, thermal and electrical properties of Fe-based composite materials. Journal of Alloys and Compounds, 2015, 645, 283-289.	5.5	31
30	Dependence of demagnetizing fields in Fe-based composite materials on magnetic particle size and the resin content. Journal of Magnetism and Magnetic Materials, 2015, 388, 76-81.	2.3	39
31	Effect of a DC transverse magnetic field on the magnetization dynamics in FeCuNbSiB ribbons and derived nanostructured powder cores. Journal of Alloys and Compounds, 2015, 651, 237-244.	5.5	17
32	Influence of the Resin Content on the Dynamic Energy Losses in Iron–Phenolphormaldehyde Resin Composites. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	16
33	Mixed and Vacuum/Pressure Impregnated Fe/SiO ₂ /Shellac Composites. Materials Science Forum, 2014, 782, 533-536.	0.3	1
34	Steinmetz law in iron–phenolformaldehyde resin soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2014, 353, 65-70.	2.3	30
35	Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores. Journal of Magnetism and Magnetic Materials, 2013, 345, 77-81.	2.3	52
36	Power loss separation in Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2013, 327, 146-150.	2.3	202

Peter Kollar

#	Article	IF	CITATIONS
37	Components of the core losses under low frequency magnetic field of the bulk Ni–Fe compacted powder material. Journal of Magnetism and Magnetic Materials, 2013, 333, 18-21.	2.3	10
38	Analysis of the Complex Permeability Versus Frequency of Soft Magnetic Composites Consisting of Iron and \${m Fe}_{73}{m Cu}_{1}{m Nb}_{3}{m Si}_{16}{m B}_{7}\$. IEEE Transactions on Magnetics, 2012, 48, 1545-1548.	2.1	39
39	Soft Magnetic Properties of Nanostructured Vitroperm Alloy Powder Cores. IEEE Transactions on Magnetics, 2010, 46, 471-474.	2.1	17
40	AC Magnetic Properties of Fe-Based Composite Materials. IEEE Transactions on Magnetics, 2010, 46, 467-470.	2.1	38
41	Magnetic properties and stress distribution in hydrogenated FeCrB amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2006, 304, e648-e650.	2.3	2
42	Co-based Soft Magnetic Bulk Materials Prepared by Hot Powder Compaction. European Physical Journal D, 2004, 54, 81-84.	0.4	2
43	The influence of magnetic anisotropy caused by laser treatment on magnetic properties of FINEMET. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1495-1496.	2.3	1
44	Co-based soft magnetic bulk amorphous ferromagnets prepared by powder consolidation. Physica Status Solidi A, 2003, 199, 299-304.	1.7	12
45	Fe/MgO Powder Composite Sintered by Microwave Heating. , 0, , .		0