List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6317259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DAMPs and NETs in Sepsis. Frontiers in Immunology, 2019, 10, 2536.	4.8	333
2	Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature Medicine, 2013, 19, 1489-1495.	30.7	322
3	Current trends in inflammatory and immunomodulatory mediators in sepsis. Journal of Leukocyte Biology, 2012, 93, 329-342.	3.3	244
4	Release mechanisms of major DAMPs. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 152-162.	4.9	214
5	Ghrelin Attenuates Sepsis-induced Acute Lung Injury and Mortality in Rats. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 805-813.	5.6	198
6	Ghrelin Down-regulates Proinflammatory Cytokines in Sepsis Through Activation of the Vagus Nerve. Annals of Surgery, 2007, 245, 480-486.	4.2	174
7	Review: milk fat globule-EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1077-1086.	4.9	129
8	Extracellular CIRP (eCIRP) and inflammation. Journal of Leukocyte Biology, 2019, 106, 133-146.	3.3	124
9	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	8.5	119
10	Milk Fat Globule Epidermal Growth Factor 8 Attenuates Acute Lung Injury in Mice after Intestinal Ischemia and Reperfusion. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 238-246.	5.6	113
11	DENDRITIC CELL-DERIVED EXOSOMES CONTAINING MILK FAT GLOBULE EPIDERMAL GROWTH FACTOR-FACTOR VIII ATTENUATE PROINFLAMMATORY RESPONSES IN SEPSIS. Shock, 2006, 25, 586-593.	2.1	99
12	Immature Dendritic Cell-Derived Exosomes Rescue Septic Animals Via Milk Fat Globule Epidermal Growth Factor VIII. Journal of Immunology, 2009, 183, 5983-5990.	0.8	99
13	The role of B-1 cells in inflammation. Immunologic Research, 2015, 63, 153-166.	2.9	91
14	Upregulation of cardiovascular ghrelin receptor occurs in the hyperdynamic phase of sepsis. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1296-H1302.	3.2	90
15	Ghrelin Suppresses Inflammation and Neuronal Nitric Oxide Synthase in Focal Cerebral Ischemia Via the Vagus Nerve. Shock, 2011, 35, 258-265.	2.1	90
16	B-1a cells protect mice from sepsis-induced acute lung injury. Molecular Medicine, 2018, 24, 26.	4.4	90
17	Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Critical Care, 2015, 19, 53.	5.8	88
18	Cold-inducible RNA-binding protein mediates neuroinflammation in cerebral ischemia. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2253-2261.	2.4	82

#	Article	IF	CITATIONS
19	Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome. Scientific Reports, 2016, 6, 26571.	3.3	81
20	Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight, 2020, 5, .	5.0	81
21	The vitals of NETs. Journal of Leukocyte Biology, 2021, 110, 797-808.	3.3	77
22	CIRP increases ICAM-1+ phenotype of neutrophils exhibiting elevated iNOS and NETs in sepsis. Journal of Leukocyte Biology, 2018, 103, 693-707.	3.3	76
23	Pre-Treatment of Recombinant Mouse MFG-E8 Downregulates LPS-Induced TNF-α Production in Macrophages via STAT3-Mediated SOCS3 Activation. PLoS ONE, 2011, 6, e27685.	2.5	74
24	Milk Fat Globule-Epidermal Growth Factor-Factor 8 Attenuates Neutrophil Infiltration in Acute Lung Injury via Modulation of CXCR2. Journal of Immunology, 2012, 189, 393-402.	0.8	72
25	Blocking Cold-Inducible RNA-Binding Protein Protects Liver From Ischemia-Reperfusion Injury. Shock, 2015, 43, 24-30.	2.1	72
26	Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Scientific Reports, 2017, 7, 41363.	3.3	65
27	Exosomes in Sepsis. Frontiers in Immunology, 2020, 11, 2140.	4.8	57
28	B-1a Cells Protect Mice from Sepsis: Critical Role of CREB. Journal of Immunology, 2017, 199, 750-760.	0.8	48
29	Growth Arrest–Specific Protein 6 Attenuates Neutrophil Migration and Acute Lung Injury in Sepsis. Shock, 2013, 40, 485-491.	2.1	47
30	FK866, a Visfatin Inhibitor, Protects Against Acute Lung Injury After Intestinal Ischemia–Reperfusion in Mice via NF-κB Pathway. Annals of Surgery, 2014, 259, 1007-1017.	4.2	46
31	The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. Journal of Molecular Medicine, 2021, 99, 1373-1384.	3.9	45
32	Differential alterations of tissue T-cell subsets after sepsis. Immunology Letters, 2015, 168, 41-50.	2.5	41
33	A cold-inducible RNA-binding protein (CIRP)-derived peptide attenuates inflammation and organ injury in septic mice. Scientific Reports, 2018, 8, 3052.	3.3	41
34	Cold-inducible RNA-binding protein activates splenic T cells during sepsis in a TLR4-dependent manner. Cellular and Molecular Immunology, 2018, 15, 38-47.	10.5	41
35	Extracellular micro <scp>RNA</scp> 130bâ€3p inhibits <scp>eCIRP</scp> â€induced inflammation. EMBO Reports, 2020, 21, e48075	4.5	40
36	Cold-Inducible RNA-Binding Protein Is an Important Mediator of Alcohol-Induced Brain Inflammation. PLoS ONE, 2013, 8, e79430.	2.5	40

#	Article	IF	CITATIONS
37	Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma. Cell Death and Disease, 2017, 8, e2775-e2775.	6.3	39
38	Deficiency of cold-inducible ribonucleic acid-binding protein reduces renal injury after ischemia-reperfusion. Surgery, 2016, 160, 473-483.	1.9	38
39	CIRP Induces Neutrophil Reverse Transendothelial Migration in Sepsis. Shock, 2019, 51, 548-556.	2.1	37
40	Cold-inducible RNA-binding Protein Induces Neutrophil Extracellular Traps in the Lungs during Sepsis. Scientific Reports, 2019, 9, 6252.	3.3	36
41	The Protective Effect of A Short Peptide Derived From Cold-Inducible RNA-Binding Protein in Renal Ischemia–Reperfusion Injury. Shock, 2018, 49, 269-276.	2.1	35
42	Extracellular CIRP and TREMâ€1 axis promotes ICAMâ€1â€Rhoâ€mediated NETosis in sepsis. FASEB Journal, 2020 34, 9771-9786.	, 0.5	34
43	Ghrelin Hyporesponsiveness Contributes to Age-Related Hyperinflammation in Septic Shock. Annals of Surgery, 2009, 250, 126-133.	4.2	32
44	Extracellular CIRP induces macrophage endotoxin tolerance through IL-6R–mediated STAT3 activation. JCI Insight, 2020, 5, .	5.0	32
45	Milk fat globule–EGF factor VIII ameliorates liver injury after hepatic ischemia-reperfusion. Journal of Surgical Research, 2013, 180, e37-e46.	1.6	30
46	Deficiency in cold-inducible RNA-binding protein attenuates acute respiratory distress syndrome induced by intestinal ischemia-reperfusion. Surgery, 2017, 162, 917-927.	1.9	29
47	Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats. PLoS ONE, 2015, 10, e0118213.	2.5	29
48	Upregulation of GRAIL Is Associated with Impaired CD4 T Cell Proliferation in Sepsis. Journal of Immunology, 2014, 192, 2305-2314.	0.8	27
49	Role of reverse transendothelial migration of neutrophils in inflammation. Biological Chemistry, 2016, 397, 497-506.	2.5	27
50	Attenuation of hemorrhage-associated lung injury by adjuvant treatment with C23, an oligopeptide derived from cold-inducible RNA-binding protein. Journal of Trauma and Acute Care Surgery, 2017, 83, 690-697.	2.1	27
51	Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4+ aged neutrophils. Journal of Leukocyte Biology, 2018, 104, 1159-1171.	3.3	25
52	MFG-E8 inhibits neutrophil migration through αvβ3-integrin-dependent MAP kinase activation. International Journal of Molecular Medicine, 2015, 36, 18-28.	4.0	23
53	Cold-inducible RNA-binding protein-derived peptide C23 attenuates inflammation and tissue injury in a murine model of intestinal ischemia-reperfusion. Surgery, 2018, 164, 1191-1197.	1.9	23
54	C23, an oligopeptide derived from cold-inducible RNA-binding protein, suppresses inflammation and reduces lung injury in neonatal sepsis. Journal of Pediatric Surgery, 2019, 54, 2053-2060.	1.6	23

#	Article	IF	CITATIONS
55	Exosome-Mediated eCIRP Release From Macrophages to Induce Inflammation in Sepsis. Frontiers in Pharmacology, 2021, 12, 791648.	3.5	23
56	Therapeutic effect of human ghrelin and growth hormone: Attenuation of immunosuppression in septic aged rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2584-2593.	3.8	21
57	Therapeutic Potential of B-1a Cells in COVID-19. Shock, 2020, 54, 586-594.	2.1	21
58	Extracellular cold-inducible RNA-binding protein regulates neutrophil extracellular trap formation and tissue damage in acute pancreatitis. Laboratory Investigation, 2020, 100, 1618-1630.	3.7	21
59	Ghrelin as an Anti-Sepsis Peptide: Review. Frontiers in Immunology, 2020, 11, 610363.	4.8	20
60	Measurement of Phagocytic Engulfment of Apoptotic Cells by Macrophages Using pHrodo Succinimidyl Ester. Current Protocols in Immunology, 2013, 100, Unit 14.31	3.6	19
61	Extracellular CIRP Induces Inflammation in Alveolar Type II Cells via TREM-1. Frontiers in Cell and Developmental Biology, 2020, 8, 579157.	3.7	19
62	Inhibition of a triggering receptor expressed on myeloid cells-1 (TREM-1) with an extracellular cold-inducible RNA-binding protein (eCIRP)-derived peptide protects mice from intestinal ischemia-reperfusion injury. Surgery, 2020, 168, 478-485.	1.9	19
63	Damage-Associated Molecular Patterns As Double-Edged Swords in Sepsis. Antioxidants and Redox Signaling, 2021, 35, 1308-1323.	5.4	19
64	Extracellular CIRP activates STING to exacerbate hemorrhagic shock. JCI Insight, 2021, 6, .	5.0	19
65	TREM-1 Modulation Strategies for Sepsis. Frontiers in Immunology, 0, 13, .	4.8	19
66	Combined Administration of Human Ghrelin and Human Growth Hormone Attenuates Organ Injury and Improves Survival in Aged Septic Rats. Molecular Medicine, 2016, 22, 124-135.	4.4	18
67	AICAR Attenuates Organ Injury and Inflammatory Response after Intestinal Ischemia and Reperfusion. Molecular Medicine, 2014, 20, 676-683.	4.4	16
68	Milk Fat Globule-EGF Factor VIII Attenuates CNS Injury by Promoting Neural Stem Cell Proliferation and Migration after Cerebral Ischemia. PLoS ONE, 2015, 10, e0122833.	2.5	16
69	Frontline Science: Extracellular CIRP generates a proinflammatory Ly6G+CD11bhi subset of low-density neutrophils in sepsis. Journal of Leukocyte Biology, 2021, 109, 1019-1032.	3.3	16
70	Inhibition of Efferocytosis by Extracellular CIRP–Induced Neutrophil Extracellular Traps. Journal of Immunology, 2021, 206, 797-806.	0.8	16
71	Extracellular CIRP Promotes GPX4-Mediated Ferroptosis in Sepsis. Frontiers in Immunology, 0, 13, .	4.8	16
72	Active Release of eCIRP via Gasdermin D Channels to Induce Inflammation in Sepsis. Journal of Immunology, 2022, 208, 2184-2195.	0.8	15

#	Article	IF	CITATIONS
73	MFG-E8-derived peptide attenuates adhesion and migration of immune cells to endothelial cells. Journal of Leukocyte Biology, 2017, 101, 1201-1209.	3.3	14
74	Buprenorphine Markedly Elevates a Panel of Surrogate Markers in a Murine Model of Sepsis. Shock, 2019, 52, 550-553.	2.1	14
75	Extracellular CIRP Induces Macrophage Extracellular Trap Formation Via Gasdermin D Activation. Frontiers in Immunology, 2021, 12, 780210.	4.8	13
76	Anti–interferon-α receptor 1 antibodies attenuate inflammation and organ injury following hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 2019, 86, 881-890.	2.1	12
77	The protective role of human ghrelin in sepsis: Restoration of CD4 T cell proliferation. PLoS ONE, 2018, 13, e0201139.	2.5	10
78	Targeting the eCIRP/TREM-1 interaction with a small molecule inhibitor improves cardiac dysfunction in neonatal sepsis. Molecular Medicine, 2020, 26, 121.	4.4	10
79	Potential Role of Extracellular CIRP in Alcohol-Induced Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 5000-5010.	4.0	10
80	The Role of Siglec-G on Immune Cells in Sepsis. Frontiers in Immunology, 2021, 12, 621627.	4.8	10
81	Extracellular CIRP Activates the IL-6Rα/STAT3/Cdk5 Pathway in Neurons. Molecular Neurobiology, 2021, 58, 3628-3640.	4.0	10
82	Extracellular CIRP Induces an Inflammatory Phenotype in Pulmonary Fibroblasts via TLR4. Frontiers in Immunology, 2021, 12, 721970.	4.8	10
83	Milk fat globule-epidermal growth factor-factor VIII attenuates sepsis-induced acute kidney injury. Journal of Surgical Research, 2017, 213, 281-289.	1.6	9
84	Milk fat globule-epidermal growth factor-factor VIII–derived peptide MSP68 is a cytoskeletal immunomodulator of neutrophils that inhibits Rac1. Journal of Surgical Research, 2017, 208, 10-19.	1.6	8
85	Inhibition of the Interaction of TREM-1 and eCIRP Attenuates Inflammation and Improves Survival in Hepatic Ischemia/Reperfusion. Shock, 2022, 57, 246-255.	2.1	7
86	An extracellular cold-inducible RNA-binding protein-derived small peptide targeting triggering receptor expressed on myeloid cells-1 attenuates hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 2020, 88, 809-815.	2.1	6
87	Milk fat globule-epidermal growth factor-factor VIII downregulates interleukin-17 expression in sepsis byÂmodulating STAT3 activation. Surgery, 2016, 159, 560-569.	1.9	5
88	A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery, 2022, 172, 639-647.	1.9	5
89	Necroptosis-Mediated eCIRP Release in Sepsis. Journal of Inflammation Research, 0, Volume 15, 4047-4059.	3.5	5
90	Recombinant human milk fat globule-EGF factor VIII (rhMFG-E8) as a therapy for sepsis after acute exposure to alcohol. Molecular Medicine, 2019, 25, 52.	4.4	4

#	Article	IF	CITATIONS
91	Extracellular CIRP decreases Siglec-G expression on B-1a cells skewing them towards a pro-inflammatory phenotype in sepsis. Molecular Medicine, 2021, 27, 55.	4.4	4
92	Role of MFG-E8 in Neonatal Inflammation. , 2017, , 21-30.		3
93	MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon, 2020, 6, e05794.	3.2	3
94	The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS ONE, 2022, 17, e0266163.	2.5	3
95	Therapeutic Potential of B-1a Cells in Intestinal Ischemia-Reperfusion Injury. Journal of Surgical Research, 2021, 268, 326-336.	1.6	2
96	Novel Inflammatory and Immunomodulatory Mediators in Sepsis. , 2017, , 211-234.		1
97	MFG-E8 and Acute Lung Injury. , 2014, , 149-172.		1
98	What's New in Shock, May 2016?. Shock, 2016, 45, 471-474.	2.1	0
99	Role of MFG-E8 in the Brain. , 2014, , 173-187.		0