List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Thermoelectric Materials and Devices Based on <i>p</i> ―and <i>n</i> â€Type Poly(metal) Tj ETQq1 1	0.784314 21.0	rgBT /Overloo 448
2	Convenient construction of poly(3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2013, 1, 12395.	10.3	242
3	A Solventâ€Exchange Strategy to Regulate Noncovalent Interactions for Strong and Antiswelling Hydrogels. Advanced Materials, 2020, 32, e2004579.	21.0	177
4	Palladium-Catalyzed Cycloisomerizations of (<i>Z</i>)-1-lodo-1,6-dienes: Iodine Atom Transfer and Mechanistic Insight to Alkyl Iodide Reductive Elimination. Journal of the American Chemical Society, 2011, 133, 6187-6193.	13.7	163
5	Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Science Advances, 2019, 5, eaau3442.	10.3	144
6	Superabsorbent polymers used for agricultural water retention. Polymer Testing, 2021, 94, 107021.	4.8	98
7	Hysteresisâ€Free Nanoparticleâ€Reinforced Hydrogels. Advanced Materials, 2022, 34, e2108243.	21.0	92
8	The effect of composition on the structure of sodium borophosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 3671-3677.	3.1	87
9	Janus Nanosheets of Polymer–Inorganic Layered Composites. Macromolecules, 2012, 45, 1460-1467.	4.8	86
10	Robust Anisotropic Composite Particles with Tunable Janus Balance. Macromolecules, 2012, 45, 5176-5184.	4.8	73
11	Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1081-1091.	2.8	70
12	An Injectable Strong Hydrogel for Bone Reconstruction. Advanced Healthcare Materials, 2019, 8, e1900709.	7.6	65
13	Bioactive Nanoparticle–Gelatin Composite Scaffold with Mechanical Performance Comparable to Cancellous Bones. ACS Applied Materials & Interfaces, 2014, 6, 13061-13068.	8.0	64
14	Construction of Injectable Double-Network Hydrogels for Cell Delivery. Biomacromolecules, 2017, 18, 2128-2138.	5.4	62
15	Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Food Chemistry, 2018, 268, 271-278.	8.2	60
16	Bioactive Poreâ€Forming Bone Adhesives Facilitating Cell Ingrowth for Fracture Healing. Advanced Materials, 2020, 32, e1907491.	21.0	54
17	Porous Particle-Reinforced Bioactive Gelatin Scaffold for Large Segmental Bone Defect Repairing. ACS Applied Materials & Interfaces, 2018, 10, 6956-6964.	8.0	53
18	Gas-Flow-Induced Reorientation to Centimeter-Sized Two-Dimensional Colloidal Single Crystal of Polystyrene Particle. Langmuir, 2014, 30, 3019-3023.	3.5	49

#	Article	IF	CITATIONS
19	Ultra-tough injectable cytocompatible hydrogel for 3D cell culture and cartilage repair. Journal of Materials Chemistry B, 2018, 6, 1351-1358.	5.8	49
20	Responseâ€Retaliation Behavior in Synthetic Protocell Communities. Angewandte Chemie - International Edition, 2019, 58, 17758-17763.	13.8	47
21	A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis. ACS Applied Materials & Interfaces, 2015, 7, 11280-11285.	8.0	45
22	Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. Journal of Materials Chemistry B, 2017, 5, 2416-2424.	5.8	43
23	Novel bioactive glass based injectable bone cement with improved osteoinductivity and its in vivo evaluation. Scientific Reports, 2017, 7, 3622.	3.3	43
24	A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Materials Chemistry and Physics, 2008, 111, 455-462.	4.0	39
25	A three-tiered colloidosomal microreactor for continuous flow catalysis. Nature Communications, 2021, 12, 6113.	12.8	39
26	Effective Antifogging Coating from Hydrophilic/Hydrophobic Polymer Heteronetwork. Advanced Science, 2022, 9, e2200072.	11.2	38
27	Hollow Microsphere with Mesoporous Shell by Pickering Emulsion Polymerization as a Potential Colloidal Collector for Organic Contaminants in Water. Langmuir, 2014, 30, 3681-3686.	3.5	35
28	Waterborne Dispersions of a Polymer-Encapsulated Inorganic Particle Nanocomposite by Phase-Inversion Emulsification. Macromolecular Rapid Communications, 2002, 23, 479.	3.9	34
29	A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids and Surfaces B: Biointerfaces, 2009, 70, 254-258.	5.0	34
30	Maximizing the Relaxivity of Gd-Complex by Synergistic Effect of HSA and Carboxylfullerene. ACS Applied Materials & Interfaces, 2012, 4, 3724-3729.	8.0	33
31	A Small-Angle Neutron Scattering Study of Adsorbed Polymer Structure in Concentrated Colloidal Dispersions. Langmuir, 2008, 24, 2983-2986.	3.5	31
32	Bioactive Nanoparticle through Postmodification of Colloidal Silica. ACS Applied Materials & Interfaces, 2014, 6, 4935-4939.	8.0	31
33	One-Pot Synthesis of Highly Folded Microparticles by Suspension Polymerization. Langmuir, 2011, 27, 12771-12774.	3.5	29
34	Enhance the mechanical performance of polyacrylamide hydrogel by aluminium-modified colloidal silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 103-110.	4.7	29
35	Fabrication of a Composite Colloidal Particle with Unusual Janus Structure as a High-Performance Solid Emulsifier. Langmuir, 2012, 28, 12472-12478.	3.5	28
36	Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Materials Science and Engineering C, 2017, 75, 590-595.	7.3	28

#	Article	IF	CITATIONS
37	Small-Angle Neutron Scattering Study of Concentrated Colloidal Dispersions:  The Interparticle Interactions between Sterically Stabilized Particles. Langmuir, 2005, 21, 9964-9969.	3.5	27
38	Phytic acid derived bioactive CaO–P2O5–SiO2 gel-glasses. Journal of Materials Science: Materials in Medicine, 2011, 22, 2685-2691.	3.6	27
39	Core–shell plasmonic nanostructures to fine-tune long ``Au nanoparticle-fluorophore'' distance and radiative dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 101-108.	4.7	27
40	Influence of a Surfactant and Electrolytes on Adsorbed Polymer Layers. Langmuir, 2007, 23, 2408-2413.	3.5	25
41	A Small-Angle X-ray Scattering Study of the Interactions in Concentrated Silica Colloidal Dispersions. Langmuir, 2006, 22, 546-552.	3.5	24
42	Steric Interactions between Physically Adsorbed Polymer-Coated Colloidal Particles:Â Soft or Hard?. Langmuir, 2007, 23, 475-481.	3.5	24
43	Responsive Behaviors of Diblock Polyampholyte Brushes within Self-Consistent Field Theory. Journal of Physical Chemistry B, 2012, 116, 743-750.	2.6	23
44	An easy-to-use wound dressing gelatin-bioactive nanoparticle gel and its preliminary in vivo study. Journal of Materials Science: Materials in Medicine, 2017, 28, 10.	3.6	22
45	Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses. RSC Advances, 2017, 7, 22063-22070.	3.6	22
46	Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2008, 48, 378-383.	2.4	21
47	Mitigation of metal-mediated losses by coating Au nanoparticles with dielectric layer in plasmonic solar cells. RSC Advances, 2013, 3, 16080.	3.6	21
48	"House-of-cards―structures in silicone rubber composites for superb anti-collapsing performance at medium high temperature. RSC Advances, 2016, 6, 7970-7976.	3.6	21
49	Biphasic Double-Network Hydrogel With Compartmentalized Loading of Bioactive Class for Osteochondral Defect Repair. Frontiers in Bioengineering and Biotechnology, 2020, 8, 752.	4.1	19
50	Janus polymeric cages. Polymer, 2012, 53, 3712-3718.	3.8	18
51	Direct measuring of single–heterogeneous bubble nucleation mediated by surface topology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
52	Optically switchable organic hollow nanocapsules. Journal of Colloid and Interface Science, 2010, 343, 155-161.	9.4	17
53	Reinforcement of silicone rubber with raspberryâ€like SiO ₂ @Polymer composite particles. Polymer International, 2015, 64, 992-998.	3.1	17
54	Optimizing the interaction between poly(vinyl alcohol) and sandy soil for enhanced water retention performance. RSC Advances, 2016, 6, 13377-13383.	3.6	17

#	Article	IF	CITATIONS
55	Selfâ€Collapsing of Single Molecular Polyâ€Propylene Oxide (PPO) in a 3D DNA Network. Small, 2018, 14, 1703426.	10.0	17
56	Narrowly Distributed Surfactant-Free Polystyrene Latex with a Water-Soluble Comonomer. Macromolecular Chemistry and Physics, 2005, 206, 2233-2238.	2.2	16
57	A low-temperature sol–gel route for the synthesis of bioactive calcium silicates. Chinese Chemical Letters, 2013, 24, 170-172.	9.0	16
58	In vitro evaluation of a novel <scp>pH</scp> neutral calcium phosphosilicate bioactive glass that does not require preconditioning prior to use. International Journal of Applied Glass Science, 2017, 8, 403-411.	2.0	16
59	Small-Angle Neutron Scattering Study of Concentrated Colloidal Dispersions:Â The Electrostatic/Steric Composite Interactions between Colloidal Particles. Langmuir, 2006, 22, 6060-6067.	3.5	15
60	Facile Preparation Route toward Speckled Colloids via Seeded Polymerization. Langmuir, 2013, 29, 2152-2158.	3.5	15
61	Poly(ethylene oxide) Adsorption on Polystyrene Latex Particles in the Presence of Poly(styrenesulfonate sodium). Macromolecules, 2009, 42, 547-552.	4.8	13
62	Disorder-tuned charge transport in organic semiconductors. Applied Physics Letters, 2013, 102, .	3.3	13
63	In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone grafts. Materials Science and Engineering C, 2020, 116, 111249.	7.3	13
64	Effect of Polyvinyl Alcohol on Ice Formation in the Presence of a Liquid/Solid Interface. Langmuir, 2017, 33, 191-196.	3.5	12
65	Wrinkled double network hydrogel <i>via</i> simple stretch-recovery. Chemical Communications, 2020, 56, 13587-13590.	4.1	12
66	A comparative study of the structure of sodium borophosphates made by sol–gel and melt-quench methods. Journal of Non-Crystalline Solids, 2010, 356, 490-494.	3.1	11
67	Small-Angle Neutron Scattering Study of Cyclic Poly(ethylene glycol) Adsorption on Colloidal Particles. Langmuir, 2014, 30, 5170-5175.	3.5	11
68	Fabrication of Large-Sized Two-Dimensional Ordered Surface Array with Well-Controlled Structure via Colloidal Particle Lithography. Langmuir, 2014, 30, 7024-7029.	3.5	11
69	Effect of Peptide Charge Distribution on the Structure and Kinetics of DNA Complex. Macromolecules, 2015, 48, 756-763.	4.8	11
70	Large scale synthesis of single-chain/colloid Janus nanoparticles with tunable composition. Chemical Communications, 2020, 56, 3875-3878.	4.1	11
71	A novel bioactive glass-based root canal sealer in endodontics. Journal of Dental Sciences, 2022, 17, 217-224.	2.5	11
72	A hierarchical rippled and crumpled PLA microstructure generated through double emulsion: the interesting roles of Pickering nanoparticles. Chemical Communications, 2015, 51, 16251-16254.	4.1	10

#	Article	IF	CITATIONS
73	In vivo study of a bioactive nanoparticle-gelatin composite scaffold for bone defect repair in rabbits. Journal of Materials Science: Materials in Medicine, 2017, 28, 181.	3.6	10
74	Fabrication of monodisperse asymmetric polystyrene particles by crosslinking regulation in seeded emulsion polymerization. Polymer, 2020, 203, 122799.	3.8	10
75	Molecular level study of cadmium adsorption on dithiocarbamate modified chitosan. Environmental Pollution, 2021, 271, 116322.	7.5	10
76	An X-ray absorption spectroscopy study of the local environment of iron in degradable iron–phosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 5542-5546.	3.1	9
77	One-Pot Synthesis of Regular Rhombic Titanium Dioxide Supracolloidal Submicrometer Sheet via Sol–Gel Method. Langmuir, 2014, 30, 35-40.	3.5	9
78	Detailed structure of a new bioactive glass composition for the design of bone repair materials. Journal of Non-Crystalline Solids, 2017, 475, 10-14.	3.1	9
79	Reversible switching of polymeric gel structure and property by solvent exchange. Science China Materials, 2022, 65, 547-552.	6.3	9
80	Design of selective cell migration biomaterials and their applications for tissue regeneration. Journal of Materials Science, 2021, 56, 4080-4096.	3.7	8
81	Facile intramolecular crosslinking of polymers by metallic coordination in concentrated solutions. Polymer Chemistry, 2021, 12, 172-176.	3.9	8
82	Sub-Micron-Sized Waterborne Particles of Crosslinked Epoxy Resin Prepared by Phase-Inversion Emulsification. Macromolecular Rapid Communications, 2001, 22, 792-796.	3.9	7
83	Progress of three-dimensional macroporous bioactive glass for bone regeneration. Frontiers of Chemical Science and Engineering, 2012, 6, 470-483.	4.4	7
84	Scalable Synthesis of Photoluminescent Singleâ€Chain Nanoparticles by Electrostaticâ€Mediated Intramolecular Crosslinking. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
85	Structures and interactions between two colloidal particles in adsorptive polymer solutions. Polymer, 2012, 53, 3409-3415.	3.8	6
86	Effect of particle polydispersity on the structure and dynamics of complex formation between small particles and large polymer. RSC Advances, 2014, 4, 14896.	3.6	6
87	Characterizing the Adsorption of Poly(vinyl alcohol) on Colloidal Silica with Aggregation-Induced Emission Fluorophore. Langmuir, 2016, 32, 2145-2150.	3.5	6
88	Amphiphilic Bioactive Filler for Acrylic Bone Cement to Enhance Its Cell Adhesion. Journal of Biomedical Nanotechnology, 2018, 14, 795-801.	1.1	6
89	Biomineralizing Dental Resin Empowered by Bioactive Amphiphilic Composite Nanoparticles. ACS Applied Bio Materials, 2019, 2, 1660-1666.	4.6	6
90	A small-angle neutron scattering study of poly(ethylene oxide) microstructure in aqueous poly(styrenesulfonate sodium) solutions. Journal of Colloid and Interface Science, 2011, 358, 226-229.	9.4	5

#	Article	IF	CITATIONS
91	Particle shape dependence of rheological behavior for colloid-polymer mixtures. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1515-1523.	3.8	5
92	Toughening anti-overswelling semicrystalline polymer hydrogels with ultra-small hydrophobic nanoparticles. Polymer, 2020, 186, 122080.	3.8	5
93	Brain-targeting delivery of MMB4 DMS using carrier-free nanomedicine CRT-MMB4@MDZ. Drug Delivery, 2021, 28, 1822-1835.	5.7	5
94	Effect of particle/polymer number ratio on the structure and dynamics of complex between large polymer and nanoparticle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 67-75.	4.7	4
95	Adhesives to empower a manipulator inspired by the chameleon tongue. Chinese Chemical Letters, 2020, 31, 821-825.	9.0	4
96	Conformational Transitions of Dynamic Polymer Chains Induced by Colloidal Particles in Dilute Solution. Macromolecules, 2020, 53, 3052-3058.	4.8	4
97	Exogels: A Solventâ€Exchange Strategy to Regulate Noncovalent Interactions for Strong and Antiswelling Hydrogels (Adv. Mater. 52/2020). Advanced Materials, 2020, 32, 2070395.	21.0	4
98	Sonicationâ€Aided Formation of Hollow Hybrid Nanoparticles as Highâ€Efficiency Absorbents for Dissolved Toluene in Water. Chemistry - an Asian Journal, 2016, 11, 280-284.	3.3	3
99	A self-consistent field study on the adsorption of symmetrical triblock copolymers between two parallel planes. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1691-1701.	3.8	2
100	Kinetics of Polymer Desorption from Colloids Probed by Aggregation-Induced Emission Fluorophore. Langmuir, 2018, 34, 7006-7010.	3.5	2
101	Bone Adhesives: Bioactive Poreâ€Forming Bone Adhesives Facilitating Cell Ingrowth for Fracture Healing (Adv. Mater. 10/2020). Advanced Materials, 2020, 32, 2070078.	21.0	2
102	Structure and interaction of adsorbing symmetrical triblock polyampholyte solution between two planes. Chinese Journal of Polymer Science (English Edition), 2016, 34, 195-208.	3.8	1
103	Scalable Synthesis of Photoluminescent Singleâ€Chain Nanoparticles by Electrostaticâ€Mediated Intramolecular Crosslinking. Angewandte Chemie, 0, , .	2.0	1
104	Preparation of Sheetâ€like Polymerâ€Encapsulated Composite Particles by Seeded Polymerization from Subâ€micrometer Sheets. Chemistry - an Asian Journal, 2015, 10, 1581-1585.	3.3	0