Hiren J Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315766/publications.pdf Version: 2024-02-01

HIDEN LOSHI

#	Article	IF	CITATIONS
1	Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 2013, 32, 1478-1488.	7.8	1,130
2	Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology, 2020, 21, 729-749.	37.0	560
3	An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell, 2019, 75, 394-407.e5.	9.7	181
4	Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Communications in Mass Spectrometry, 2004, 18, 2282-2292.	1.5	138
5	GlycoSuiteDB: a curated relational database of glycoprotein glycan structures and their biological sources. 2003 update. Nucleic Acids Research, 2003, 31, 511-513.	14.5	122
6	Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data. Proteomics, 2004, 4, 1650-1664.	2.2	121
7	Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Advances, 2017, 1, 429-442.	5.2	121
8	EUROCarbDB: An open-access platform for glycoinformatics. Glycobiology, 2011, 21, 493-502.	2.5	116
9	MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data. Plant Physiology, 2011, 155, 259-270.	4.8	94
10	Deconstruction of Oâ€glycosylation—Gal <scp>NA</scp> câ€T isoforms direct distinct subsets of theÂOâ€glycoproteome. EMBO Reports, 2015, 16, 1713-1722.	4.5	91
11	Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology, 2015, 25, 55-65.	2.5	89
12	Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11163-11168.	7.1	83
13	An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development. PLoS ONE, 2010, 5, e15481.	2.5	82
14	SnapShot: O-Glycosylation Pathways across Kingdoms. Cell, 2018, 172, 632-632.e2.	28.9	72
15	A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology, 2018, 28, 295-305.	2.5	70
16	Display of the human mucinome with defined O-glycans by gene engineered cells. Nature Communications, 2021, 12, 4070.	12.8	67
17	Mapping the O-Mannose Clycoproteome in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2016, 15, 1323-1337.	3.8	61
18	Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. Journal of Biological Chemistry, 2016, 291, 12014-12028.	3.4	59

Hiren J Joshi

#	Article	IF	CITATIONS
19	A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology, 2015, 25, 211-224.	2.5	52
20	Sharing of worldwide distributed carbohydrate-related digital resources: online connection of the Bacterial Carbohydrate Structure DataBase and GLYCOSCIENCES.de. Nucleic Acids Research, 2007, 35, D280-D286.	14.5	50
21	A Strategy for O-Glycoproteomics of Enveloped Viruses—the O-Glycoproteome of Herpes Simplex Virus Type 1. PLoS Pathogens, 2015, 11, e1004784.	4.7	46
22	An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nature Communications, 2020, 11, 4033.	12.8	46
23	Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Molecular and Cellular Proteomics, 2019, 18, 1396-1409.	3.8	44
24	Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology, 2018, 28, 284-294.	2.5	43
25	Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends in Biochemical Sciences, 2018, 43, 269-284.	7.5	40
26	Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. Journal of Biological Chemistry, 2018, 293, 19064-19077.	3.4	38
27	Multiple distinct O-Mannosylation pathways in eukaryotes. Current Opinion in Structural Biology, 2019, 56, 171-178.	5.7	37
28	Oâ€glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Reports, 2020, 21, e48885.	4.5	36
29	GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology, 2018, 28, 131-136.	2.5	25
30	TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. Journal of Biological Chemistry, 2018, 293, 7629-7644.	3.4	25
31	Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Letters, 2018, 592, 3898-3920.	2.8	23
32	1001 Proteomes: a functional proteomics portal for the analysis of <i>Arabidopsis thaliana</i> accessions. Bioinformatics, 2012, 28, 1303-1306.	4.1	21
33	Cell-Based Glycan Arrays—A Practical Guide to Dissect the Human Glycome. STAR Protocols, 2020, 1, 100017.	1.2	20
34	A strategy for generating cancer-specific monoclonal antibodies to aberrantO-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology, 2019, 29, 307-319.	2.5	17
35	GlycoViewer: a tool for visual summary and comparative analysis of the glycome. Nucleic Acids Research, 2010, 38, W667-W670.	14.5	14
36	MASCP gator: an overview of the Arabidopsis proteomic aggregation portal. Frontiers in Plant Science, 2013, 4, 411.	3.6	14

Hiren J Joshi

#	Article	IF	CITATIONS
37	Eukaryotic Glycosylation: Online Methods for Site Prediction on Protein Sequences. Methods in Molecular Biology, 2015, 1273, 127-137.	0.9	13
38	Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chemical Communications, 2020, 56, 15137-15140.	4.1	10
39	Proteome coverage of the model plant Arabidopsis thaliana: Implications for shotgun proteomic studies. Journal of Proteomics, 2013, 79, 195-199.	2.4	4
40	Protein O-GalNAc Glycosylation: The Most Complex and Differentially Regulated PTM. , 2014, , 1-14.		4
41	Managing the green proteomes for the next decade of plant research. Frontiers in Plant Science, 2013, 4, 501.	3.6	2
42	Protein O-GalNAc Glycosylation: Most Complex and Differentially Regulated PTM. , 2015, , 1049-1064.		2
43	Informatics Tools for Glycomics: Assisted Interpretation and Annotation of Mass Spectra. , 2008, , 2219-2240.		1