Antarpreet Jutla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases, 2020, 100, 476-482.	3.3	531
2	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
3	Environmental Factors Influencing Epidemic Cholera. American Journal of Tropical Medicine and Hygiene, 2013, 89, 597-607.	1.4	130
4	Warming Oceans, Phytoplankton, and River Discharge: Implications for Cholera Outbreaks. American Journal of Tropical Medicine and Hygiene, 2011, 85, 303-308.	1.4	94
5	A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida. Global and Planetary Change, 2009, 67, 62-77.	3.5	90
6	System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Canadian Journal of Civil Engineering, 2005, 32, 144-158.	1.3	70
7	Tracking Cholera in Coastal Regions Using Satellite Observations ¹ . Journal of the American Water Resources Association, 2010, 46, 651-662.	2.4	64
8	Microbiome Analysis for Wastewater Surveillance during COVID-19. MBio, 2022, 13, .	4.1	40
9	Simulation of the hydrological processes on reconstructed watersheds using system dynamics. Hydrological Sciences Journal, 2007, 52, 538-562.	2.6	36
10	A framework for predicting endemic cholera using satellite derived environmental determinants. Environmental Modelling and Software, 2013, 47, 148-158.	4.5	36
11	Assessment of microbial risks by characterization of Escherichia coli presence to analyze the public health risks from poor water quality in Nepal. International Journal of Hygiene and Environmental Health, 2020, 226, 113484.	4.3	31
12	Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook. Current Environmental Health Reports, 2017, 4, 99-107.	6.7	30
13	A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sensing Letters, 2013, 4, 822-831.	1.4	29
14	Satellite remote sensing of space–time plankton variability in the Bay of Bengal: Connections to cholera outbreaks. Remote Sensing of Environment, 2012, 123, 196-206.	11.0	28
15	Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe. PLoS ONE, 2015, 10, e0137828.	2.5	27
16	The Effect of the 2015 Earthquake on the Bacterial Community Compositions in Water in Nepal. Frontiers in Microbiology, 2017, 8, 2380.	3.5	24
17	Reinforcing cholera intervention through prediction-aided prevention. Bulletin of the World Health Organization, 2012, 90, 243-244.	3.3	23
18	Population Vulnerability to Biannual Cholera Outbreaks and Associated Macro-Scale Drivers in the Bengal Delta. American Journal of Tropical Medicine and Hygiene, 2013, 89, 950-959.	1.4	23

ANTARPREET JUTLA

#	Article	IF	CITATIONS
19	Assessment of Risk of Cholera in Haiti following Hurricane Matthew. American Journal of Tropical Medicine and Hygiene, 2017, 97, 896-903.	1.4	19
20	Global diarrhoea action plan needs integrated climate-based surveillance. The Lancet Global Health, 2014, 2, e69-e70.	6.3	16
21	A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera. Tropical Medicine and Infectious Disease, 2021, 6, 147.	2.3	12
22	Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satelliteâ€Based Observations in Detecting Outbreaks. GeoHealth, 2018, 2, 70-86.	4.0	11
23	Evaluation of Risk of Cholera after a Natural Disaster: Lessons Learned from the 2015 Nepal Earthquake. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	2.6	11
24	Identification of thresholds on population density for understanding transmission of COVIDâ€19. GeoHealth, 0, , .	4.0	11
25	Hydroclimatic sustainability assessment of changing climate on cholera in the Ganges-Brahmaputra basin. Advances in Water Resources, 2017, 108, 332-344.	3.8	10
26	Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India. Water (Switzerland), 2021, 13, 1363.	2.7	9
27	Long-Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	8
28	Environmental Association of Burning Agricultural Biomass in the Indus River Basin. GeoHealth, 2020, 4, e2020GH000281.	4.0	8
29	Distribution and Antibiotic Resistance Profiles of <i>Salmonella enterica</i> in Rural Areas of North Carolina After Hurricane Florence in 2018. GeoHealth, 2021, 5, e2020GH000294.	4.0	8
30	Predictive Time Series Analysis Linking Bengal Cholera with Terrestrial Water Storage Measured from Gravity Recovery and Climate Experiment Sensors. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1179-1186.	1.4	7
31	Satellites and Cell Phones Form a Cholera Early-Warning System. Eos, 2018, 99, .	0.1	7
32	Evapotranspiration estimation over agricultural plains using MODIS data for all sky conditions. International Journal of Remote Sensing, 2015, 36, 1235-1252.	2.9	6
33	Downscaling river discharge to assess the effects of climate change on cholera outbreaks in the Bengal Delta. Climate Research, 2015, 64, 257-274.	1.1	6
34	Estimating cholera risk from an exploratory analysis of its association with satellite-derived landÂsurface temperatures. International Journal of Remote Sensing, 2019, 40, 4898-4909.	2.9	4
35	Asymmetric Relationship between Ambient Air Temperature and Incidence of COVID-19 in the Human Population. American Journal of Tropical Medicine and Hygiene, 2022, , .	1.4	4
36	Diagnostic Approach for Monitoring Hydroclimatic Conditions Related to Emergence of West Nile Virus in West Virginia. Frontiers in Public Health, 2015, 3, 10.	2.7	2

ANTARPREET JUTLA

#	Article	IF	CITATIONS
37	In Response. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1231-1232.	1.4	1
38	Does improved risk information increase the value of cholera prevention? An analysis of stated vaccine demand in slum areas of urban Bangladesh. Social Science and Medicine, 2021, 272, 113716.	3.8	1
39	Thank You to Our 2018 Peer Reviewers. GeoHealth, 2019, 3, 82-83.	4.0	0
40	Thank You to Our 2019 Peer Reviewers. GeoHealth, 2020, 4, e2020GH000250.	4.0	0
41	Thank You to Our 2020 Peer Reviewers. GeoHealth, 2021, 5, e2021GH000404.	4.0	0
42	Thank You to Our 2021 Peer Reviewers. GeoHealth, 2022, 6, e2022GH000639.	4.0	0