Chun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6315138/publications.pdf

Version: 2024-02-01

74163 66343 5,931 101 42 75 citations h-index g-index papers 102 102 102 9382 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013, 3, 1866.	3.3	75 3
2	Transparent, flexible, and stretchable WS ₂ based humidity sensors for electronic skin. Nanoscale, 2017, 9, 6246-6253.	5.6	288
3	Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS_2) saturable absorber. Optics Express, 2014, 22, 17341.	3.4	281
4	"Chemical Blowing―of Thinâ€Walled Bubbles: Highâ€Throughput Fabrication of Largeâ€Area, Fewâ€Layered and C <i>_x</i> àêBN Nanosheets. Advanced Materials, 2011, 23, 4072-4076.	BN 21.0	217
5	Large-area synthesis of monolayer WS ₂ and its ambient-sensitive photo-detecting performance. Nanoscale, 2015, 7, 5974-5980.	5.6	211
6	Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Research, 2018, 11, 3371-3384.	10.4	190
7	3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale, 2012, 4, 1515.	5.6	167
8	Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth, 2006, 292, 19-25.	1.5	145
9	Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering. Applied Surface Science, 2008, 254, 2401-2405.	6.1	139
10	Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS. ACS Nano, 2012, 6, 8868-8877.	14.6	137
11	Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 2009, 20, 385707.	2.6	134
12	Surface Plasmon Enhanced Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Nanowires. Nano Letters, 2018, 18, 3335-3343.	9.1	133
13	Solution Synthesis of Large-Scale, High-Sensitivity ZnO/Si Hierarchical Nanoheterostructure Photodetectors. Journal of the American Chemical Society, 2010, 132, 15465-15467.	13.7	118
14	Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. Journal of Materials Chemistry C, 2015, 3, 8074-8079.	5.5	111
15	p-type transparent conducting oxides. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1891-1900.	1.8	106
16	Passively <inline-formula> <tex-math notation="LaTeX">\$Q\$ </tex-math></inline-formula> -Switched Erbium-Doped Fiber Laser Based on Few-Layer MoS ₂ Saturable Absorber. IEEE Photonics Technology Letters, 2015, 27, 69-72.	2.5	106
17	Highly responsive and broadband photodetectors based on WS ₂ –graphene van der Waals epitaxial heterostructures. Journal of Materials Chemistry C, 2017, 5, 1494-1500.	5.5	103
18	Zener Tunneling and Photoresponse of a WS ₂ /Si van der Waals Heterojunction. ACS Applied Materials & Diterfaces, 2016, 8, 18375-18382.	8.0	101

#	Article	IF	Citations
19	Effect of Seed Layer on Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport. Journal of Physical Chemistry C, 2008, 112, 990-995.	3.1	96
20	Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters, 2010, 97, .	3.3	89
21	Reactive Sputter Deposition of WO ₃ /Ag/WO ₃ Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3861-3867.	8.0	87
22	Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates: A Case Study of SnSe ₂ . Journal of Physical Chemistry C, 2013, 117, 6469-6475.	3.1	86
23	Passively Q-switched mid-infrared fluoride fiber laser around $3 < i > \hat{A} \mu < i > m$ using a tungsten disulfide (WS ₂) saturable absorber. Laser Physics Letters, 2016, 13, 105108.	1.4	75
24	Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19019-19026.	8.0	75
25	2D WS ₂ : From Vapor Phase Synthesis to Device Applications. Advanced Electronic Materials, 2021, 7, 2000688.	5.1	63
26	Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale, 2018, 10, 21451-21458.	5.6	61
27	Synthesis of In ₂ O ₃ Nanowire-Decorated Ga ₂ O ₃ Nanobelt Heterostructures and Their Electrical and Field-Emission Properties. ACS Nano, 2010, 4, 2452-2458.	14.6	60
28	Synthesis and photoluminescence properties of vertically aligned ZnO nanorod–nanowall junction arrays on a ZnO-coated silicon substrate. Nanotechnology, 2006, 17, 3740-3744.	2.6	59
29	Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .	3.3	59
30	2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale, 2020, 12, 11784-11807.	5 . 6	59
31	Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods. Nanotechnology, 2007, 18, 155702.	2.6	56
32	Enhanced Optical Absorption and Slowed Light of Reduced-Dimensional CsPbBr ₃ Nanowire Crystal by Exciton–Polariton. Nano Letters, 2020, 20, 1023-1032.	9.1	55
33	Epitaxial Nanosheet–Nanowire Heterostructures. Nano Letters, 2013, 13, 948-953.	9.1	54
34	ZnO–WS ₂ heterostructures for enhanced ultra-violet photodetectors. RSC Advances, 2016, 6, 67520-67524.	3.6	54
35	Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition. Optics and Laser Technology, 2019, 111, 571-574.	4.6	52
36	Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS Nano, 2020, 14, 14375-14390.	14.6	52

#	Article	IF	Citations
37	Structural, Photoluminescence, and Field Emission Properties of Vertically Well-Aligned ZnO Nanorod Arrays. Journal of Physical Chemistry C, 2007, 111, 12566-12571.	3.1	51
38	The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells. Materials Research Bulletin, 2008, 43, 3345-3351.	5.2	51
39	Few-layer MoS_2 grown by chemical vapor deposition as a passive Q-switcher for tunable erbium-doped fiber lasers. Photonics Research, 2015, 3, A92.	7.0	48
40	Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 30, 169-173.	2.7	47
41	Mediator–Antisolvent Strategy to Stabilize All-Inorganic CsPbl ₃ for Perovskite Solar Cells with Efficiency Exceeding 16%. ACS Energy Letters, 2020, 5, 1619-1627.	17.4	46
42	Field emission enhancement of ZnO nanorod arrays with hafnium nitride coating. Surface and Coatings Technology, 2008, 202, 3480-3484.	4.8	42
43	High Performance Van der Waals Graphene–WS ₂ –Si Heterostructure Photodetector. Advanced Materials Interfaces, 2019, 6, 1901304.	3.7	41
44	Semiconductor nanowire plasmonic lasers. Nanophotonics, 2019, 8, 2091-2110.	6.0	40
45	Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates. Journal of Physical Chemistry C, 2014, 118, 1696-1705.	3.1	38
46	Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films. Journal of Alloys and Compounds, 2018, 739, 623-631.	5.5	37
47	Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. Journal of Micromechanics and Microengineering, 2010, 20, 085002.	2.6	36
48	Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Research, 2021, 14, 1937-1954.	10.4	36
49	Graphene/WS ₂ heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. Optics Express, 2020, 28, 11514.	3.4	36
50	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	7.3	35
51	High Optical Gain of Solutionâ€Processed Mixedâ€Cation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	14.9	35
52	Synthesis of large-area uniform MoS ₂ films by substrate-moving atmospheric pressure chemical vapor deposition: from monolayer to multilayer. 2D Materials, 2019, 6, 025030.	4.4	33
53	Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS ₂ interfacial layer. Journal of Materials Chemistry C, 2021, 9, 3846-3853.	5.5	28
54	Self-assembled ZnS nanowire arrays: synthesis, <i>in situ</i> Cu doping and field emission. Nanotechnology, 2010, 21, 375601.	2.6	27

#	Article	lF	CITATIONS
55	Silver Nanoisland Induced Synthesis of ZnO Nanostructures by Vapor Phase Transport. Journal of Nanoscience and Nanotechnology, 2006, 6, 1467-1473.	0.9	25
56	Effect of adsorbates on field emission from flame-synthesized carbon nanotubes. Journal Physics D: Applied Physics, 2008, 41, 195401.	2.8	25
57	Ag nanorods assembled with ZnO nanowalls for near-linear high-response UV photodetectors. Journal of Alloys and Compounds, 2020, 830, 154652.	5. 5	25
58	Influence of N2 flow ratio on the properties of hafnium nitride thin films prepared by DC magnetron sputtering. Applied Surface Science, 2007, 253, 8538-8542.	6.1	24
59	Effect of thermal annealing on the performance of WO 3 –Ag–WO 3 transparent conductive film. Thin Solid Films, 2014, 571, 134-138.	1.8	24
60	Field emission properties of ZnO nanorod arrays by few seed layers assisted growth. Applied Surface Science, 2015, 331, 497-503.	6.1	24
61	Fabrication and vacuum annealing of transparent conductive Ga-doped Zn0.9Mg0.10 thin films prepared by pulsed laser deposition technique. Applied Surface Science, 2006, 252, 8657-8661.	6.1	22
62	Electrochromic and energy storage bifunctional Gd-doped WO ₃ /Ag/WO ₃ films. Journal of Materials Chemistry A, 2020, 8, 10973-10982.	10.3	22
63	Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment. Applied Surface Science, 2007, 253, 8478-8482.	6.1	21
64	Tactile Feedback Display with Spatial and Temporal Resolutions. Scientific Reports, 2013, 3, 2521.	3.3	21
65	Self-Organized ZnO Microcombs with Cuboid Nanobranches by Simple Thermal Evaporation. Crystal Growth and Design, 2006, 6, 2588-2591.	3.0	19
66	Effect of Size-Dependent Thermal Instability on Synthesis of Zn2SiO4-SiO x Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties. Nanoscale Research Letters, 2010, 5, 773-780.	5.7	19
67	Fabrication and electrical, photosensitive properties of p-poly(9,9-diethylfluorene)/n-silicon nanowire heterojunction. Journal of Applied Physics, 2007, 102, .	2.5	18
68	Current Imaging and Electromigration-Induced Splitting of GaN Nanowires As Revealed by Conductive Atomic Force Microscopy. ACS Nano, 2010, 4, 2422-2428.	14.6	18
69	Oriented growth of p-type transparent conducting Ca-doped SrCu2O2 thin films by pulsed laser deposition. Semiconductor Science and Technology, 2006, 21, 586-590.	2.0	17
70	Snowflake-like ZnO structures: Self-assembled growth and characterization. Materials Letters, 2008, 62, 1761-1764.	2.6	17
71	Phase-segregation assisted growth of quasi-aligned ZnO nanorods on a Mg0.6Zn0.4O-coated Si substrate by thermal evaporation. Nanotechnology, 2006, 17, 5367-5372.	2.6	16
72	Linear and nonlinear optical properties of ZnO nanorod arrays. Chinese Physics B, 2008, 17, 1291-1297.	1.4	16

#	Article	IF	CITATIONS
73	Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. Journal of Semiconductors, 2019, 40, 052201.	3.7	16
74	Graphoepitaxy of Large Scale, Highly Ordered CsPbBr 3 Nanowire Array on Muscovite Mica (001) Driven by Surface Reconstructed Grooves. Advanced Optical Materials, 2020, 8, 2000743.	7.3	15
75	Controllable Synthesis of Vertically Aligned ZnO Nanorod Arrays in Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2006, 6, 2062-2066.	0.9	14
76	Synthesis of patterned carbon nanotube arrays for field emission using a two layer Sn/Ni catalyst in an ethanol flame. Diamond and Related Materials, 2009, 18, 1375-1380.	3.9	14
77	Sputter deposition of Ag-induced WO3 nanoisland films with enhanced electrochromic properties. Journal of Alloys and Compounds, 2020, 829, 154431.	5.5	13
78	Optical properties of (100) oriented ZnO:Gd films deposited by reactive radio frequency magnetron sputtering. Materials Letters, 2014, 132, 116-118.	2.6	12
79	Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.	3.0	12
80	Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS _{2} as a saturable absorber. Chinese Physics B, 2015, 24, 084206.	1.4	11
81	Room-temperature Near-infrared Excitonic Lasing from Mechanically Exfoliated InSe Microflake. ACS Nano, 2022, 16, 1477-1485.	14.6	11
82	Facile large-area autofocusing Raman mapping system for 2D material characterization. Optics Express, 2018, 26, 9071.	3.4	10
83	Multipod ZnO 3D microstructures. Materials Letters, 2007, 61, 3310-3313.	2.6	9
84	Fabrication and electrical and photosensitive properties of silicon nanowire p–n homojunctions. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2722-2728.	1.8	9
85	CdS nanowire-modified 3D graphene foam for high-performance photo-electrochemical anode. Journal of Alloys and Compounds, 2016, 688, 37-43.	5. 5	8
86	Flame-synthesis of carbon nanotubes on silicon substrates and their field emission properties. Diamond and Related Materials, 2008, 17, 1015-1020.	3.9	7
87	Improved thermal stability of antimonyâ€doped amorphous selenium film for Xâ€ray flatâ€panel detectors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 580-584.	1.8	7
88	Gate-bias instability of few-layer WSe ₂ field effect transistors. RSC Advances, 2021, 11, 6818-6824.	3.6	6
89	Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl ₃ Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Diterfaces, 2022, 14, 21356-21362.	8.0	6
90	Synthesis and photoluminescence, field emission properties of stalactite-like ZnS-ZnO composite nanostructures. Applied Physics A: Materials Science and Processing, 2008, 90, 759-763.	2.3	5

#	Article	IF	CITATIONS
91	Bistable Silver Electrodepositionâ€Based Electrochromic Device with Reversible Threeâ€State Optical Transformation By Using WO ₃ Nanoislands Modified ITO Electrode. Advanced Materials Interfaces, 2022, 9, .	3.7	5
92	Millimeter-scale growth of highly ordered CsPbBr ₃ single-crystalline microplatelets on SiO ₂ /Si substrate by chemical vapor deposition. Journal Physics D: Applied Physics, 2021, 54, 334004.	2.8	4
93	Enhanced epitaxial growth of two-dimensional monolayer WS2 film with large single domains. Applied Materials Today, 2021, 25, 101234.	4.3	4
94	Evaluation and Dynamic Mechanism of Ecological Space in a Densely Urbanized Region During a Rapidly Growing Period—A Case Study of the Wu-E-Huang-Huang Metropolitan Interlocking Region. Sustainability, 2020, 12, 73.	3.2	3
95	Oxygen-ion diffusion and electrical conduction of La2Mo2â^'2x Fe x O9â^'δ systems. Frontiers of Materials Science in China, 2008, 2, 42-47.	0.5	2
96	Selfâ€condensing atom transfer radical polymerization of inimers of different reactivity ratios with styrene and the thermal properties of poly(2,6â€dimethylâ€1, 4â€phenylene oxide)/branched polystyrene blends. Journal of Applied Polymer Science, 2011, 121, 2957-2968.	2.6	2
97	Water electrolysis-induced optical degradation of aluminum-doped zinc oxide films. Applied Surface Science, 2006, 253, 2547-2550.	6.1	1
98	Erbium-doped fiber laser mode-locked with a few-layer MoS2 saturable absorber. , 2014, , .		1
99	Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber. , 2016, , .		1
100	A Strategy for High-Performance Photodetector based on Graphene-Si heterostructure. E3S Web of Conferences, 2020, 213, 02014.	0.5	0
101	Seed-Layer-Assisted Synthesis of Well-Aligned Zinc Oxide Nanorod Arrays for Field Emission Application., 2012,, 491-511.		O