Ivan I Maximov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631448/publications.pdf Version: 2024-02-01

Ινανι Ι Μαχιμού

#	Article	lF	CITATIONS
1	Cardiometabolic risk factors associated with brain age and accelerated brain ageing. Human Brain Mapping, 2022, 43, 700-720.	3.6	42
2	Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults. NeuroImage: Clinical, 2022, 33, 102949.	2.7	22
3	Evidence for widespread alterations in cortical microstructure after 32 h of sleep deprivation. Translational Psychiatry, 2022, 12, 161.	4.8	1
4	Sex―and ageâ€specific associations between cardiometabolic risk and white matter brain age in the <scp>UK</scp> Biobank cohort. Human Brain Mapping, 2022, 43, 3759-3774.	3.6	16
5	White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. NeuroImage, 2021, 224, 117441.	4.2	122
6	Sleep and sleep deprivation differentially alter white matter microstructure: A mixed model design utilising advanced diffusion modelling. NeuroImage, 2021, 226, 117540.	4.2	26
7	White Matter Matters: Unraveling Violence in Psychosis and Psychopathy. Schizophrenia Bulletin Open, 2021, 2, .	1.7	4
8	Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: U.K. Biobank 18,608 example. Human Brain Mapping, 2021, 42, 3141-3155.	3.6	18
9	A history of previous childbirths is linked to women's white matter brain age in midlife and older age. Human Brain Mapping, 2021, 42, 4372-4386.	3.6	24
10	Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading. Neuroradiology, 2021, 63, 1241-1251.	2.2	12
11	Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. NeuroImage, 2021, 245, 118709.	4.2	17
12	Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder: A Multisample Diffusion Tensor Imaging Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 1095-1103.	1.5	28
13	Women's brain aging: Effects of sexâ€hormone exposure, pregnancies, and genetic risk for Alzheimer's disease. Human Brain Mapping, 2020, 41, 5141-5150.	3.6	46
14	Evidence for wakefulness-related changes to extracellular space in human brain white matter from diffusion-weighted MRI. NeuroImage, 2020, 212, 116682.	4.2	27
15	Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank. Human Brain Mapping, 2019, 40, 4146-4162.	3.6	64
16	Feasibility of Non-Gaussian Diffusion Metrics in Chronic Disorders of Consciousness. Brain Sciences, 2019, 9, 123.	2.3	9
17	Probing Surface-to-Volume Ratio of an Anisotropic Medium by Diffusion NMR with General Gradient Encoding. IEEE Transactions on Medical Imaging, 2019, 38, 2507-2522.	8.9	7
18	lsotropically weighted intravoxel incoherent motion brain imaging at 7T. Magnetic Resonance Imaging, 2019, 57, 124-132.	1.8	9

Ιναν Ι Μαχιμον

#	Article	IF	CITATIONS
19	Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas. Zeitschrift Fur Medizinische Physik, 2018, 28, 14-24.	1.5	10
20	Microstructure-informed slow diffusion tractography in humans enhances visualisation of fibre pathways. Magnetic Resonance Imaging, 2018, 45, 7-17.	1.8	4
21	Chronotype differences in cortical thickness: grey matter reflects when you go to bed. Brain Structure and Function, 2018, 223, 3411-3421.	2.3	18
22	Anisotropic diffusion phantoms based on microcapillaries. Journal of Magnetic Resonance, 2017, 279, 1-10.	2.1	15
23	Comparative analysis of isotropic diffusion weighted imaging sequences. Journal of Magnetic Resonance, 2017, 275, 137-147.	2.1	16
24	Differentiation of glioma malignancy grade using diffusion MRI. Physica Medica, 2017, 40, 24-32.	0.7	36
25	Application of the limited-memory quasi-Newton algorithm for multi-dimensional, large flip-angle RF pulses at 7T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 29-39.	2.0	16
26	Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults. NeuroImage, 2017, 144, 12-22.	4.2	47
27	Using Structural and Functional Brain Imaging to Investigate Responses to Acute Thermal Pain. Journal of Pain, 2016, 17, 836-844.	1.4	9
28	Statistical Instability of TBSS Analysis Based on DTI Fitting Algorithm. Journal of Neuroimaging, 2015, 25, 883-891.	2.0	23
29	Genetic variation in the G72 gene is associated with increased frontotemporal fiber tract integrity. European Archives of Psychiatry and Clinical Neuroscience, 2015, 265, 291-301.	3.2	5
30	Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods. Journal of Magnetic Resonance, 2015, 254, 110-120.	2.1	17
31	Influence of Noise Correction on Intra- and Inter-Subject Variability of Quantitative Metrics in Diffusion Kurtosis Imaging. PLoS ONE, 2014, 9, e94531.	2.5	34
32	"Early to bed, early to rise― Diffusion tensor imaging identifies chronotype-specificity. NeuroImage, 2014, 84, 428-434.	4.2	48
33	Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS. Journal of Magnetic Resonance, 2013, 227, 57-61.	2.1	21
34	Complex patterns of non-Gaussian diffusion in artificial anisotropic tissue models. Microporous and Mesoporous Materials, 2013, 178, 44-47.	4.4	6
35	Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. Journal of Chemical Physics, 2012, 137, 054203.	3.0	52
36	Spatially variable Rician noise in magnetic resonance imaging. Medical Image Analysis, 2012, 16, 536-548.	11.6	42

Ιναν Ι Μαχιμον

#	Article	IF	CITATIONS
37	Robust tensor estimation in diffusion tensor imaging. Journal of Magnetic Resonance, 2011, 213, 136-144.	2.1	19
38	A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design. Journal of Chemical Physics, 2010, 132, 084107.	3.0	36
39	Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. Journal of Chemical Physics, 2008, 128, 184505.	3.0	81
40	Line shapes of multiple quantum NMR coherences in one-dimensional quantum spin chains in solids. Journal of Magnetic Resonance, 2004, 171, 37-42.	2.1	14
41	Multiple Quantum Dynamics in Linear Chains and Rings of Nuclear Spins in Solids at Low Temperatures. Journal of Magnetic Resonance, 2002, 157, 106-113.	2.1	17
42	Supercomputer analysis of one-dimensional multiple-quantum dynamics of nuclear spins in solids. Chemical Physics Letters, 2001, 341, 144-152.	2.6	23