Peng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6314043/publications.pdf

Version: 2024-02-01

207 papers 13,694 citations

67 h-index 27345 106 g-index

226 all docs

 $\begin{array}{c} 226 \\ \\ \text{docs citations} \end{array}$

226 times ranked

10000 citing authors

#	Article	IF	CITATIONS
1	Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds. Nature, 2015, 524, 79-83.	13.7	479
2	Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies. Journal of the American Chemical Society, 2016, 138, 2411-2425.	6.6	384
3	Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. Journal of the American Chemical Society, 2010, 132, 6205-6213.	6.6	324
4	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	6.6	317
5	Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349, 62-66.	6.0	316
6	Suzukiâ^'Miyaura Cross-Coupling of Aryl Carbamates and Sulfamates: Experimental and Computational Studies. Journal of the American Chemical Society, 2011, 133, 6352-6363.	6.6	285
7	Catalytic Ketyl-Olefin Cyclizations Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2013, 135, 10022-10025.	6.6	275
8	Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6407-6412.	3.7	272
9	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	6.6	263
10	Copper-catalyzed asymmetric addition of olefin-derived nucleophiles to ketones. Science, 2016, 353, 144-150.	6.0	227
11	Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature, 2016, 539, 546-550.	13.7	217
12	Distortion/Interaction Analysis Reveals the Origins of Selectivities in Iridium-Catalyzed C–H Borylation of Substituted Arenes and 5-Membered Heterocycles. Journal of the American Chemical Society, 2014, 136, 4575-4583.	6.6	215
13	Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. Journal of the American Chemical Society, 2017, 139, 16548-16555.	6.6	189
14	A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 Câ^'H arylation. Nature Chemistry, 2018, 10, 540-548.	6.6	180
15	<i>Z</i> -Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity. Journal of the American Chemical Society, 2012, 134, 1464-1467.	6.6	176
16	Dynamics, transition states, and timing of bond formation in Diels–Alder reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12860-12865.	3.3	166
17	Catalytic Intermolecular Carboamination of Unactivated Alkenes via Directed Aminopalladation. Journal of the American Chemical Society, 2017, 139, 11261-11270.	6.6	165
18	Catalyst-Free and Redox-Neutral Innate Trifluoromethylation and Alkylation of Aromatics Enabled by Light. Journal of the American Chemical Society, 2017, 139, 14315-14321.	6.6	153

#	Article	IF	CITATIONS
19	CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019, 141, 5062-5070.	6.6	151
20	Nickel-catalyzed amination of aryl carbamates and sequential site-selective cross-couplings. Chemical Science, 2011, 2, 1766.	3.7	148
21	An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nature Chemistry, 2019, 11, 987-993.	6.6	146
22	Origins of Differences in Reactivities of Alkenes, Alkynes, and Allenes in [Rh(CO)2Cl]2-Catalyzed (5 + 2) Cycloaddition Reactions with Vinylcyclopropanes. Journal of the American Chemical Society, 2008, 130, 2378-2379.	6.6	145
23	Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings. Accounts of Chemical Research, 2015, 48, 1736-1745.	7.6	144
24	Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature, 2019, 567, 373-378.	13.7	135
25	Origin of Enantioselectivity in Benzotetramisole-Catalyzed Dynamic Kinetic Resolution of Azlactones. Organic Letters, 2012, 14, 3288-3291.	2.4	134
26	C(alkenyl)â€"H Activation via Six-Membered Palladacycles: Catalytic 1,3-Diene Synthesis. Journal of the American Chemical Society, 2018, 140, 5805-5813.	6.6	134
27	Mechanism and Enantioselectivity in Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to β-Substituted Cyclic Enones: Insights from Computation and Experiment. Journal of the American Chemical Society, 2013, 135, 14996-15007.	6.6	131
28	Electronic and Steric Control of Regioselectivities in Rh(I)-Catalyzed ($5 + 2$) Cycloadditions: Experiment and Theory. Journal of the American Chemical Society, 2010, 132, 10127-10135.	6.6	128
29	Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nature Chemistry, 2018, 10, 866-872.	6.6	122
30	Ligand Steric Contours To Understand the Effects of $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene Ligands on the Reversal of Regioselectivity in Ni-Catalyzed Reductive Couplings of Alkynes and Aldehydes. Journal of the American Chemical Society, 2011, 133, 6956-6959.	6.6	119
31	Understanding Reactivity and Stereoselectivity in Palladium-Catalyzed Diastereoselective sp ³ C–H Bond Activation: Intermediate Characterization and Computational Studies. Journal of the American Chemical Society, 2012, 134, 14118-14126.	6.6	115
32	Mechanism and Origins of Ligand-Controlled Linear Versus Branched Selectivity of Iridium-Catalyzed Hydroarylation of Alkenes. ACS Catalysis, 2016, 6, 809-820.	5.5	114
33	Ligand Effects on Rates and Regioselectivities of Rh(I)-Catalyzed ($5 + 2$) Cycloadditions: A Computational Study of Cyclooctadiene and Dinaphthocyclooctatetraene as Ligands. Journal of the American Chemical Society, 2012, 134, 11012-11025.	6.6	110
34	Origins of Regioselectivity and Alkene-Directing Effects in Nickel-Catalyzed Reductive Couplings of Alkynes and Aldehydes. Journal of the American Chemical Society, 2010, 132, 2050-2057.	6.6	109
35	Experimental and Computational Exploration of <i>para</i> å€Selective Silylation with a Hydrogenâ€Bonded Template. Angewandte Chemie - International Edition, 2017, 56, 14903-14907.	7.2	107
36	Origin of Enantioselectivity in CF ₃ â^'PIP-Catalyzed Kinetic Resolution of Secondary Benzylic Alcohols. Journal of the American Chemical Society, 2008, 130, 13836-13837.	6.6	106

#	Article	IF	CITATIONS
37	Substituent Effects, Reactant Preorganization, and Ligand Exchange Control the Reactivity in Rh ^I â€Catalyzed (5+2) Cycloadditions between Vinylcyclopropanes and Alkynes. Angewandte Chemie - International Edition, 2008, 47, 3939-3941.	7.2	105
38	Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions. Journal of the American Chemical Society, 2018, 140, 13976-13984.	6.6	101
39	Enzymatic hydroxylation of an unactivated methylene C–H bond guided by molecular dynamics simulations. Nature Chemistry, 2015, 7, 653-660.	6.6	100
40	Benzazetidine synthesis via palladium-catalysed intramolecular Câ^'H amination. Nature Chemistry, 2016, 8, 1131-1136.	6.6	100
41	A unified photoredox-catalysis strategy for C(sp ³)–H hydroxylation and amidation using hypervalent iodine. Chemical Science, 2017, 8, 7180-7185.	3.7	97
42	Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions. Journal of the American Chemical Society, 2014, 136, 17273-17283.	6.6	96
43	Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl <i>C</i> -Glycosides. Journal of the American Chemical Society, 2017, 139, 17908-17922.	6.6	96
44	Computational Study of Rh-Catalyzed Carboacylation of Olefins: Ligand-Promoted Rhodacycle Isomerization Enables Regioselective C–C Bond Functionalization of Benzocyclobutenones. Journal of the American Chemical Society, 2015, 137, 8274-8283.	6.6	95
45	Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). Journal of the American Chemical Society, 2019, 141, 7486-7497.	6.6	95
46	Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyneâ^'Aldehyde Coupling Reactions. Journal of the American Chemical Society, 2009, 131, 6654-6655.	6.6	94
47	Decomposition Pathways of <i>Z</i> Selective Ruthenium Metathesis Catalysts. Journal of the American Chemical Society, 2012, 134, 7861-7866.	6.6	94
48	Computational Study of Ni-Catalyzed Câ€"H Functionalization: Factors That Control the Competition of Oxidative Addition and Radical Pathways. Journal of the American Chemical Society, 2017, 139, 9909-9920.	6.6	94
49	High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano, 2014, 8, 2609-2617.	7.3	91
50	Modular <i>ipso</i> / <i>ortho</i> Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. Journal of the American Chemical Society, 2018, 140, 8551-8562.	6.6	91
51	Theoretical study of Pd(0)-catalyzed carbohalogenation of alkenes: mechanism and origins of reactivities and selectivities in alkyl halide reductive elimination from Pd(ii) species. Chemical Science, 2012, 3, 1987.	3.7	90
52	Origins of Initiation Rate Differences in Ruthenium Olefin Metathesis Catalysts Containing Chelating Benzylidenes. Journal of the American Chemical Society, 2015, 137, 5782-5792.	6.6	89
53	Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano, 2013, 7, 2659-2668.	7.3	88
54	Catalytic Câ^'H Trifluoromethoxylation of Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2018, 57, 9645-9649.	7.2	88

#	Article	IF	CITATIONS
55	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ^'H Trifluoromethoxylation. Angewandte Chemie - International Edition, 2018, 57, 13795-13799.	7.2	85
56	Mechanism and Origins of Selectivities in the Copper-Catalyzed Dearomatization-Induced ⟨i⟩ortho⟨ i⟩ Câ€"H Cyanation of Vinylarenes. ACS Catalysis, 2015, 5, 2944-2951.	5 . 5	84
57	Tridentate Directing Groups Stabilize 6-Membered Palladacycles in Catalytic Alkene Hydrofunctionalization. Journal of the American Chemical Society, 2017, 139, 15576-15579.	6.6	83
58	Sterically Shielded, Stabilized Nitrile Imine for Rapid Bioorthogonal Protein Labeling in Live Cells. Journal of the American Chemical Society, 2018, 140, 4860-4868.	6.6	83
59	Asymmetric Synthesis of β-Lactam via Palladium-Catalyzed Enantioselective Intramolecular C(sp ³)–H Amidation. ACS Catalysis, 2020, 10, 114-120.	5 . 5	83
60	Ni-Catalyzed Arylboration of Unactivated Alkenes: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2019, 141, 9391-9400.	6.6	78
61	Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity. Journal of the American Chemical Society, 2013, 135, 9271-9274.	6.6	76
62	Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation– <i>n</i> li> Interaction. Journal of the American Chemical Society, 2017, 139, 4346-4349.	6.6	75
63	Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. Journal of the American Chemical Society, 2019, 141, 5741-5752.	6.6	75
64	Rhodiumâ€Catalyzed Enantioselective Radical Addition of CX ₄ Reagents to Olefins. Angewandte Chemie - International Edition, 2017, 56, 8780-8784.	7.2	73
65	Application of Trimethylgermanyl-Substituted Bisphosphine Ligands with Enhanced Dispersion Interactions to Copper-Catalyzed Hydroboration of Disubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 18213-18222.	6.6	73
66	Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science, 2021, 374, 1612-1616.	6.0	73
67	Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science, 2021, 372, 175-182.	6.0	72
68	<i>Z</i> -Selective Ethenolysis with a Ruthenium Metathesis Catalyst: Experiment and Theory. Journal of the American Chemical Society, 2013, 135, 5848-5858.	6.6	71
69	NHC Ligands Tailored for Simultaneous Regio- and Enantiocontrol in Nickel-Catalyzed Reductive Couplings. Journal of the American Chemical Society, 2017, 139, 9317-9324.	6.6	71
70	Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. Journal of the American Chemical Society, 2021, 143, 10686-10694.	6.6	71
71	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	5.2	69
72	A Photoswitchable Olefin Metathesis Catalyst. Organometallics, 2017, 36, 490-497.	1.1	69

#	Article	IF	Citations
73	Catalytic, Enantioselective N-Acylation of Lactams and Thiolactams Using Amidine-Based Catalysts. Journal of the American Chemical Society, 2012, 134, 17605-17612.	6.6	68
74	Mechanism and Origins of Ligand-Controlled Selectivities in [Ni(NHC)]-Catalyzed Intramolecular (5 +) Tj ETQq0 0 Society, 2013, 135, 1456-1462.	0 rgBT /0 6.6	overlock 10 T 68
75	Kinetic Resolution via Rh-Catalyzed C–C Activation of Cyclobutanones at Room Temperature. Journal of the American Chemical Society, 2019, 141, 16260-16265.	6.6	67
76	Predictive Model for Oxidative C–H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. Journal of the American Chemical Society, 2017, 139, 17935-17944.	6.6	64
77	Cascade CuH-catalysed conversion of alkynes into enantioenriched 1,1-disubstituted products. Nature Catalysis, 2020, 3, 23-29.	16.1	64
78	2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles. Journal of the American Chemical Society, 2020, 142, 8972-8979.	6.6	64
79	Monovalent Nickel-Mediated Radical Formation: A Concerted Halogen-Atom Dissociation Pathway Determined by Electroanalytical Studies. Journal of the American Chemical Society, 2021, 143, 14196-14206.	6.6	64
80	Catalytic, Enantioselective αâ€Alkylation of Azlactones with Nonconjugated Alkenes by Directed Nucleopalladation. Angewandte Chemie - International Edition, 2019, 58, 3923-3927.	7.2	63
81	H-bonded reusable template assisted para-selective ketonisation using soft electrophilic vinyl ethers. Nature Communications, 2018, 9, 3582.	5.8	62
82	Carboxylate-Assisted C(sp ³)â€"H Activation in Olefin Metathesis-Relevant Ruthenium Complexes. Journal of the American Chemical Society, 2014, 136, 6733-6743.	6.6	61
83	Traversing Steric Limitations by Cooperative Lewis Base/Palladium Catalysis: An Enantioselective Synthesis of αâ€Branched Esters Using 2â€Substituted Allyl Electrophiles. Angewandte Chemie - International Edition, 2018, 57, 7800-7803.	7.2	61
84	Energy Decomposition Analyses Reveal the Origins of Catalyst and Nucleophile Effects on Regioselectivity in Nucleopalladation of Alkenes. Journal of the American Chemical Society, 2019, 141, 11892-11904.	6.6	61
85	On the Mechanism of Ligand-Assisted, Copper-Catalyzed Benzylic Amination by Chloramine-T. Organometallics, 2010, 29, 3404-3412.	1.1	57
86	Asymmetric allylic substitution–isomerization to axially chiral enamides <i>via</i> hydrogen-bonding assisted central-to-axial chirality transfer. Chemical Science, 2020, 11, 10119-10126.	3.7	57
87	Mechanism of the Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Cobaltâ€Substituted 12â€Tungstenphosphate. Chemistry - A European Journal, 2012, 18, 9870-9876.	1.7	56
88	Regioselective, Photocatalytic \hat{l}_{\pm} -Functionalization of Amines. Journal of the American Chemical Society, 2020, 142, 11972-11977.	6.6	54
89	Branchedâ€Selective Direct αâ€Alkylation of Cyclic Ketones with Simple Alkenes. Angewandte Chemie - International Edition, 2019, 58, 4366-4370.	7.2	53
90	A Transientâ€Directingâ€Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angewandte Chemie - International Edition, 2020, 59, 8885-8890.	7.2	53

#	Article	IF	CITATIONS
91	Synthesis of Pyrroles through the CuH-Catalyzed Coupling of Enynes and Nitriles. Journal of the American Chemical Society, 2020, 142, 9908-9914.	6.6	52
92	Stereoselective Palladium-Catalyzed Base-Free Suzuki–Miyaura Cross-Coupling of Tetrasubstituted ⟨i⟩gem⟨ i⟩-Difluoroalkenes: An Experimental and Computational Study. ACS Catalysis, 2021, 11, 4799-4809.	5 . 5	52
93	Ligandâ€Controlled Regiodivergence in Nickelâ€Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angewandte Chemie - International Edition, 2020, 59, 23306-23312.	7.2	51
94	Synthesis of Boriranes by Double Hydroboration Reactions of N-Heterocyclic Carbene Boranes and Dimethyl Acetylenedicarboxylate. Journal of the American Chemical Society, 2017, 139, 1726-1729.	6.6	49
95	Epimerization of Tertiary Carbon Centers via Reversible Radical Cleavage of Unactivated C(sp ³)–H Bonds. Journal of the American Chemical Society, 2018, 140, 9678-9684.	6.6	49
96	Cyclometalated $\langle i \rangle Z \langle j i \rangle$ -Selective Ruthenium Metathesis Catalysts with Modified N-Chelating Groups. Organometallics, 2015, 34, 2858-2869.	1.1	48
97	$\hat{l}^2 \hat{a} \in \mathbf{S}$ elective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7318-7323.	7.2	47
98	Entry to 1,2,3,4-Tetrasubstituted Arenes through Addressing the "⟨i⟩Meta⟨/i⟩ Constraint―in the Palladium/Norbornene Catalysis. Journal of the American Chemical Society, 2020, 142, 3050-3059.	6.6	44
99	Catalytic radical difluoromethoxylation of arenes and heteroarenes. Chemical Science, 2019, 10, 3217-3222.	3.7	43
100	Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catalysis, 2020, 10, 282-291.	5 . 5	43
101	Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric Pauson–Khand Reaction of Allenyl Acetates. Journal of the American Chemical Society, 2017, 139, 15022-15032.	6.6	42
102	Ab Initio Molecular Dynamics Simulations of the S _N 1/S _N 2 Mechanistic Continuum in Glycosylation Reactions. Journal of the American Chemical Society, 2021, 143, 1577-1589.	6.6	41
103	Excited-State Palladium-Catalyzed Radical Migratory Mizoroki–Heck Reaction Enables C2-Alkenylation of Carbohydrates. Journal of the American Chemical Society, 2022, 144, 3353-3359.	6.6	41
104	Mechanism of Sulfite-Driven, MeReO ₃ -Catalyzed Deoxydehydration of Glycols. Organometallics, 2013, 32, 1821-1831.	1.1	40
105	Dimer Involvement and Origin of Crossover in Nickel-Catalyzed Aldehyde–Alkyne Reductive Couplings. Journal of the American Chemical Society, 2014, 136, 17495-17504.	6.6	40
106	Anti-selective [3+2] (Hetero)annulation of non-conjugated alkenes via directed nucleopalladation. Nature Communications, 2020, 11, 6432.	5.8	40
107	Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective \hat{I}^2 -Fluoride Elimination. Journal of the American Chemical Society, 2021, 143, 13759-13768.	6.6	40
108	Inversion of Enantioselectivity in Allene Gas versus Allyl Acetate Reductive Aldehyde Allylation Guided by Metal-Centered Stereogenicity: An Experimental and Computational Study. ACS Catalysis, 2019, 9, 9158-9163.	5 . 5	39

#	Article	IF	CITATIONS
109	Integrating Allyl Electrophiles into Nickelâ€Catalyzed Conjunctive Crossâ€Coupling. Angewandte Chemie - International Edition, 2020, 59, 7029-7034.	7.2	39
110	Highly Enantioselective Synthesis of Indazoles with a C3-Quaternary Chiral Center Using CuH Catalysis. Journal of the American Chemical Society, 2020, 142, 10550-10556.	6.6	38
111	Nickel-Catalyzed Dearomative Arylboration of Indoles: Regioselective Synthesis of C2- and C3-Borylated Indolines. Journal of the American Chemical Society, 2021, 143, 16502-16511.	6.6	38
112	Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2016, 138, 1394-1405.	6.6	37
113	Site-Selective and Stereoselective <i>O</i> li>-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion. Journal of the American Chemical Society, 2019, 141, 19902-19910.	6.6	36
114	Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates. Journal of the American Chemical Society, 2021, 143, 8590-8596.	6.6	36
115	A "Traceless―Directing Group Enables Catalytic S _{<i>N</i>>/i>} 2 Glycosylation toward 1,2- <i>cis</i> -Glycopyranosides. Journal of the American Chemical Society, 2021, 143, 11908-11913.	6.6	36
116	Development of Chiral Bis-hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates. Journal of Organic Chemistry, 2015, 80, 313-366.	1.7	35
117	Redoxâ€Neutral TEMPO Catalysis: Direct Radical (Hetero)Aryl Câ^'H Di―and Trifluoromethoxylation. Angewandte Chemie - International Edition, 2020, 59, 21475-21480.	7.2	35
118	Mechanistic studies on intramolecular C–H trifluoromethoxylation of (hetero)arenes via OCF3-migration. Organic and Biomolecular Chemistry, 2016, 14, 5599-5605.	1.5	33
119	Catalytic Câ^'H Trifluoromethoxylation of Arenes and Heteroarenes. Angewandte Chemie, 2018, 130, 9793-9797.	1.6	33
120	Manifestation of Felkin–Anh Control in Enantioselective Acyl Transfer Catalysis: Kinetic Resolution of Carboxylic Acids. Angewandte Chemie - International Edition, 2012, 51, 9638-9642.	7.2	32
121	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	7.8	32
122	Confronting the Challenging Asymmetric Carbonyl 1,2-Addition Using Vinyl Heteroarene Pronucleophiles: Ligand-Controlled Regiodivergent Processes through a Dearomatized Allyl–Cu Species. Journal of the American Chemical Society, 2022, 144, 5985-5995.	6.6	32
123	Remote Substituent Effects in Ruthenium-Catalyzed [2+2] Cycloadditions:  An Experimental and Theoretical Study. Journal of Organic Chemistry, 2006, 71, 3793-3803.	1.7	30
124	Ligand Conformational Flexibility Enables Enantioselective Tertiary C–B Bond Formation in the Phosphonate-Directed Catalytic Asymmetric Alkene Hydroboration. Journal of the American Chemical Society, 2021, 143, 4801-4808.	6.6	30
125	Ruthenabenzene: A Robust Precatalyst. Journal of the American Chemical Society, 2021, 143, 7490-7500.	6.6	30
126	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ~H Trifluoromethoxylation. Angewandte Chemie, 2018, 130, 13991-13995.	1.6	29

#	Article	IF	CITATIONS
127	Catalytic, Enantioselective αâ€Alkylation of Azlactones with Nonconjugated Alkenes by Directed Nucleopalladation. Angewandte Chemie, 2019, 131, 3963-3967.	1.6	29
128	Cafestol to Tricalysiolide B and Oxidized Analogues: Biosynthetic and Derivatization Studies Using Non-heme Iron Catalyst Fe(PDP). Synlett, 2012, 23, 2768-2772.	1.0	28
129	Competition Between Concerted and Stepwise Dynamics in the Triplet Diâ€Ï€â€Methane Rearrangement. Angewandte Chemie - International Edition, 2014, 53, 8664-8667.	7.2	28
130	Traversing Steric Limitations by Cooperative Lewis Base/Palladium Catalysis: An Enantioselective Synthesis of αâ€Branched Esters Using 2â€Substituted Allyl Electrophiles. Angewandte Chemie, 2018, 130, 7926-7929.	1.6	28
131	Rhodium(I)â€Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles. Chemistry - A European Journal, 2016, 22, 10410-10414.	1.7	27
132	A Ringâ€Opening Metathesis Polymerization Catalyst That Exhibits Redoxâ€Switchable Monomer Selectivities. Chemistry - A European Journal, 2017, 23, 5994-6000.	1.7	27
133	An Initiation Kinetics Prediction Model Enables Rational Design of Ruthenium Olefin Metathesis Catalysts Bearing Modified Chelating Benzylidenes. ACS Catalysis, 2018, 8, 4600-4611.	5.5	27
134	Ruthenium-Catalyzed Reductive Cleavage of Unstrained Aryl–Aryl Bonds: Reaction Development and Mechanistic Study. Journal of the American Chemical Society, 2019, 141, 18630-18640.	6.6	27
135	A Short Synthesis of Delavatine A Unveils New Insights into Site-Selective Cross-Coupling of 3,5-Dibromo-2-pyrone. Journal of the American Chemical Society, 2019, 141, 2652-2660.	6.6	26
136	Chiral Amines via Enantioselective π-Allyliridium- <i>C</i> , <i>O</i> -Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial–Academic Collaboration. Accounts of Chemical Research, 2022, 55, 2138-2147.	7.6	26
137	Mechanism and Origins of Regio―and Enantioselectivities in Rh ^I â€Catalyzed Hydrogenative Couplings of 1,3â€Diynes and Activated Carbonyl Partners: Intervention of a Cumulene Intermediate. Chemistry - A European Journal, 2011, 17, 4021-4029.	1.7	25
138	Theoretical studies of regioselectivity of Ni- and Rh-catalyzed C–C bond forming reactions with unsymmetrical alkynes. Inorganica Chimica Acta, 2011, 369, 2-14.	1.2	25
139	<i>Cis</i> -Selective Metathesis to Enhance the Living Character of Ring-Opening Polymerization: An Approach to Sequenced Copolymers. ACS Macro Letters, 2018, 7, 858-862.	2.3	25
140	Intermolecular Regio―and Stereoselective Heteroâ€[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines. Angewandte Chemie - International Edition, 2019, 58, 887-891.	7.2	25
141	Pd ^{II} â€Catalyzed C(alkenyl)â^'H Activation Facilitated by a Transient Directing Group**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
142	Cu-Catalyzed Hydroboration of Benzylidenecyclopropanes: Reaction Optimization, (Hetero)Aryl Scope, and Origins of Pathway Selectivity. ACS Catalysis, 2019, 9, 11130-11136.	5.5	23
143	Experimental and Computational Exploration of <i>para</i> å€Selective Silylation with a Hydrogenâ€Bonded Template. Angewandte Chemie, 2017, 129, 15099-15103.	1.6	22
144	Origins of the Stereoretentive Mechanism of Olefin Metathesis with Ru-Dithiolate Catalysts. Journal of Organic Chemistry, 2017, 82, 10595-10600.	1.7	22

#	Article	IF	CITATIONS
145	Tuning the Reactivity of Cyclopropenes from Living Ringâ€Opening Metathesis Polymerization (ROMP) to Singleâ€Addition and Alternating ROMP. Angewandte Chemie - International Edition, 2019, 58, 17771-17776.	7.2	22
146	Compatibility Score for Rational Electrophile Selection in Pd/NBE Cooperative Catalysis. CheM, 2020, 6, 2810-2825.	5.8	22
147	Regioselectivity in the Cu(I)-Catalyzed [4 + 2]-Cycloaddition of 2-Nitrosopyridine with Unsymmetrical Dienes. Journal of Organic Chemistry, 2014, 79, 5617-5626.	1.7	21
148	Theoretical studies of the conformations and 19F NMR spectra of linear and a branched perfluorooctanesulfonamide (PFOSAmide). Chemosphere, 2007, 69, 1213-1220.	4.2	20
149	<i>S</i> â€Adamantyl Group Directed Siteâ€Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angewandte Chemie - International Edition, 2019, 58, 9542-9546.	7.2	20
150	C2-ketonylation of carbohydrates <i>via</i> excited-state palladium-catalyzed 1,2-spin-center shift. Chemical Science, 2022, 13, 6276-6282.	3.7	20
151	Disentangling Ligand Effects on Metathesis Catalyst Activity: Experimental and Computational Studies of Ruthenium–Aminophosphine Complexes. Journal of the American Chemical Society, 2018, 140, 5634-5643.	6.6	19
152	Multifaceted Substrate–Ligand Interactions Promote the Copper-Catalyzed Hydroboration of Benzylidenecyclobutanes and Related Compounds. ACS Catalysis, 2020, 10, 13075-13083.	5.5	19
153	Controlling cyclization pathways in palladium(<scp>ii</scp>)-catalyzed intramolecular alkene hydro-functionalization <i>via</i>) substrate directivity. Chemical Science, 2020, 11, 11307-11314.	3.7	19
154	Redoxâ€Neutral TEMPO Catalysis: Direct Radical (Hetero)Aryl Câ^'H Di―and Trifluoromethoxylation. Angewandte Chemie, 2020, 132, 21659-21664.	1.6	19
155	Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C–H borylation of heteroarenes. Chemical Science, 2021, 12, 1031-1037.	3.7	19
156	Using Ring Strain to Control 4Ï€-Electrocyclization Reactions: Torquoselectivity in Ring Closing of Medium-Ring Dienes and Ring Opening of Bicyclic Cyclobutenes. Journal of Organic Chemistry, 2017, 82, 4613-4624.	1.7	18
157	A redox-switchable ring-closing metathesis catalyst. Inorganic Chemistry Frontiers, 2017, 4, 1525-1532.	3.0	18
158	Computational Study of the Ni-Catalyzed C–H Oxidative Cycloaddition of Aromatic Amides with Alkynes. ACS Omega, 2019, 4, 5209-5220.	1.6	18
159	The Thermal Rearrangement of an NHCâ€Ligated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie - International Edition, 2020, 59, 903-909.	7.2	18
160	Enantioselective Iridium-Catalyzed Allylation of Nitroalkanes: Entry to \hat{l}^2 -Stereogenic \hat{l} ±-Quaternary Primary Amines. Journal of the American Chemical Society, 2021, 143, 9343-9349.	6.6	18
161	Ruthenium-catalyzed [2+2] cycloadditions between substituted alkynes and norbornadiene: a theoretical study. Tetrahedron, 2007, 63, 7659-7666.	1.0	16
162	Confined organization of fullerene units along high polymer chains. Journal of Materials Chemistry C, 2013, 1, 5747.	2.7	16

#	Article	IF	CITATIONS
163	Computational Investigations of the Effects of <i>N-</i> Heterocyclic Carbene Ligands on the Mechanism, Reactivity, and Regioselectivity of Rh-Catalyzed Hydroborations. ACS Catalysis, 2020, 10, 3820-3827.	5.5	16
164	Low-valent tungsten redox catalysis enables controlled isomerization and carbonylative functionalization of alkenes. Nature Chemistry, 2022, 14, 632-639.	6.6	16
165	Concerted [4 + 2] and Stepwise (2 + 2) Cycloadditions of Tetrafluoroethylene with Butadiene: DFT and DLPNO-UCCSD(T) Explorations. Journal of Organic Chemistry, 2020, 85, 3858-3864.	1.7	15
166	Mechanism and Origins of Enantioselectivity in the Rh(I)-Catalyzed Pauson–Khand Reaction: Comparison of Bidentate and Monodentate Chiral Ligands. ACS Catalysis, 2021, 11, 323-336.	5.5	15
167	C–N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp ³)–H Amination: A Combined Computational and Experimental Investigation. Journal of the American Chemical Society, 2022, 144, 11215-11225.	6.6	15
168	Kinetics and Inverse Temperature Dependence of a Tsuji–Trost Reaction in Aqueous Buffer. ACS Catalysis, 2019, 9, 11720-11733.	5.5	14
169	Branchedâ€ S elective Direct αâ€Alkylation of Cyclic Ketones with Simple Alkenes. Angewandte Chemie, 2019, 131, 4410-4414.	1.6	14
170	P-stereogenic N-vinylphosphonamides enabled by asymmetric allylic substitution-isomerization. Cell Reports Physical Science, 2021, 2, 100594.	2.8	14
171	ob>Origins of Catalyst-Controlled Selectivity in Ag-Catalyzed Regiodivergent C–H Amination Journal of the American Chemical Society, 2022, 144, 2735-2746.	6.6	14
172	Rhodium atalyzed Intramolecular [5+2] Cycloaddition of Inverted 3â€Acyloxyâ€1,4â€enyne and Alkyne: Experimental and Theoretical Studies. Chemistry - A European Journal, 2016, 22, 7079-7083.	1.7	13
173	<i>·î·2·4/i·3ê€Mannosylation through <i·>O<td>1.2</td><td>13</td></i·></i>	1.2	13
174	A Transientâ€Directingâ€Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angewandte Chemie, 2020, 132, 8970-8975.	1.6	13
175	[2Ï€ + 2Ï€] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects. ACS Nano, 2021, 15, 4833-4844.	7.3	13
176	Mechanistic Insights into the ReIO ₂ (PPh ₃) ₂ -Promoted Reductive Coupling of Alcohols. Organometallics, 2018, 37, 2468-2480.	1.1	12
177	Energy Decomposition Analysis Reveals the Nature of Lone Pairâ^'Ï€ Interactions with Cationic Ï€ Systems in Catalytic Acyl Transfer Reactions. Organic Letters, 2021, 23, 4411-4414.	2.4	12
178	Development and Mechanistic Studies of the Iridium atalyzed Câ^'H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angewandte Chemie - International Edition, 2021, 60, 20926-20934.	7.2	12
179	Synthesis of $(+)$ -ribostamycin by catalytic, enantioselective hydroamination of benzene., 2022, 1, 542-547.		12
180	Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. Journal of the American Chemical Society, 2022, 144, 13344-13355.	6.6	12

#	Article	IF	CITATIONS
181	Intramolecular Câ€"H Activation Reactions of Ru(NHC) Complexes Combined with H ₂ Transfer to Alkenes: A Theoretical Elucidation of Mechanisms and Effects of Ligands on Reactivities. Organometallics, 2017, 36, 3613-3623.	1.1	8
182	The Thermal Rearrangement of an NHCâ€Ligated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie, 2020, 132, 913-919.	1.6	8
183	Reductive Lithiation in the Absence of Aromatic Electron Carriers. A Steric Effect Manifested on the Surface of Lithium Metal Leads to a Difference in Relative Reactivity Depending on Whether the Aromatic Electron Carrier Is Present or Absent. Journal of Organic Chemistry, 2015, 80, 8571-8582.	1.7	7
184	Fundamental Difference in Reductive Lithiations with Preformed Radical Anions versus Catalytic Aromatic Electronâ€Transfer Agents: ⟨i⟩N⟨ i⟩,⟨i⟩Nâ€< i⟩Dimethylaniline as an Advantageous Catalyst. Angewandte Chemie - International Edition, 2016, 55, 383-386.	7.2	7
185	1,3-Dipolar Cycloaddition Reactions of Low-Valent Rhodium and Iridium Complexes with Arylnitrile <i>N</i> -Oxides. Journal of Organic Chemistry, 2017, 82, 5096-5101.	1.7	7
186	$\hat{l}^2\hat{a}$ €Selective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 7396-7401.	1.6	7
187	Metal-Free C–C Coupling of an Allenyl Sulfone with Picolyl Amides to Access Vinyl Sulfones via Pyridine-Initiated In Situ Generation of Sulfinate Anion. Journal of Organic Chemistry, 2020, 85, 7959-7975.	1.7	7
188	The 3Dmol.js Learning Environment: A Classroom Response System for 3D Chemical Structures. Journal of Chemical Education, 2020, 97, 3872-3876.	1.1	6
189	Ligandâ€Controlled Regiodivergence in Nickelâ€Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angewandte Chemie, 2020, 132, 23506-23512.	1.6	6
190	Thiol Reactivity of $\langle i \rangle N \langle i \rangle$ -Aryl α-Methylene-γ-lactams: A Reactive Group for Targeted Covalent Inhibitor Design. Journal of Organic Chemistry, 2021, 86, 11926-11936.	1.7	6
191	Kinetic, ESI–CID–MS, and Computational Studies of π-Allyliridium <i>C,O</i> h>-Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catalysis, 2022, 12, 3660-3668.	5.5	6
192	Mechanismâ€Based Approach to Reagent Selection for Oxidative Carbonâ^'Hydrogen Bond Cleavage Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	5
193	Density Functional Theory Study on the Mechanism of Iridium-Catalyzed Benzylamine <i>ortho</i> C–H Alkenylation with Ethyl Acrylate. ACS Omega, 2020, 5, 15446-15453.	1.6	4
194	Integrating Allyl Electrophiles into Nickelâ€Catalyzed Conjunctive Crossâ€Coupling. Angewandte Chemie, 2020, 132, 7095-7100.	1.6	4
195	Noncovalent Interaction- and Steric Effect-Controlled Regiodivergent Selectivity in Dimeric Manganese-Catalyzed Hydroarylation of Internal Alkynes: A Computational Study. Journal of Organic Chemistry, 2022, 87, 4215-4225.	1.7	4
196	Redox-switchable olefin cross metathesis (CM) reactions and acyclic diene metathesis (ADMET) polymerizations. Materials Chemistry Frontiers, 2019, 3, 2083-2089.	3.2	3
197	Tuning the Reactivity of Cyclopropenes from Living Ringâ€Opening Metathesis Polymerization (ROMP) to Singleâ€Addition and Alternating ROMP. Angewandte Chemie, 2019, 131, 17935-17940.	1.6	3
198	Using Computational Chemistry to Understand & Discover Chemical Reactions. Daedalus, 2014, 143, 49-66.	0.9	2

PENG LIU

#	Article	IF	Citations
199	S â€Adamantyl Group Directed Siteâ€Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angewandte Chemie, 2019, 131, 9642-9646.	1.6	2
200	Development and Mechanistic Studies of the Iridium atalyzed Câ^'H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angewandte Chemie, 2021, 133, 21094-21102.	1.6	2
201	Correction: Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6573-6573.	3.7	1
202	Intermolecular Regio―and Stereoselective Heteroâ€[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines. Angewandte Chemie, 2019, 131, 897-901.	1.6	1
203	One-electron reduction induced spin transition in Fe(<scp>ii</scp>) spin crossover molecules and the effect of the ligand. Journal of Materials Chemistry C, 2021, 9, 4808-4814.	2.7	1
204	Rh(I)-Catalyzed Allenic Pauson–Khand Reaction to Access the Thapsigargin Core: Influence of Furan and Allenyl Chloroacetate Groups on Enantioselectivity. Organic Letters, 2022, 24, 995-999.	2.4	1
205	Pd(II)â€Catalyzed C(alkenyl)–H Activation Facilitated by a Transient Directing Group. Angewandte Chemie, 0, , .	1.6	1
206	Issues Particular to Organometallic Reactions. , 2018, , 519-539.		0
207	Mechanism and stereospecificity of Z-enamide synthesis from salicylaldehydes with isoxazoles using DFT calculations. Journal of Organometallic Chemistry, 2019, 903, 120981.	0.8	0