Qingshi Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6313621/publications.pdf

Version: 2024-02-01

147801 123424 3,822 75 31 61 citations h-index g-index papers 76 76 76 3703 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Smart multifunctional elastomeric nanocomposite materials containing graphene nanoplatelets. , 2023, 1, 100006.		1
2	Multifunctional, flexible and mechanically resilient porous polyurea/graphene composite film. Journal of Industrial and Engineering Chemistry, 2022, 105, 549-562.	5.8	4
3	Effect of graphene nanoplatelets on water absorption and impact resistance of fibre-metal laminates under varying environmental conditions. Composite Structures, 2022, 281, 114977.	5.8	10
4	Effect of graphene on the mechanical and electrochemical properties of GLARE. Journal of Adhesion Science and Technology, 2022, 36, 2159-2175.	2.6	1
5	Multifunctional and durable graphene-based composite sponge doped with antimonene nanosheets. Journal of Materials Research and Technology, 2022, 17, 2466-2479.	5.8	10
6	Flexible, mechanically robust, multifunctional and sustainable cellulose/graphene nanocomposite films for wearable human-motion monitoring. Composites Science and Technology, 2022, 230, 109451.	7.8	20
7	Investigation on graphene addition on the quasi-static and dynamic responses of carbon fibre-reinforced metal laminates. Thin-Walled Structures, 2022, 174, 109092.	5.3	11
8	3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors. Journal of Materials Science and Technology, 2022, 117, 174-182.	10.7	13
9	Effect of graphene nanosheets on interlaminar mechanical properties of carbon fiber reinforced metal laminates. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40, 141-147.	0.5	O
10	Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. Nanotechnology, 2022, 33, 415701.	2.6	6
11	Graphene/nanorubber reinforced electrically conductive epoxy composites with enhanced toughness. Journal of Applied Polymer Science, 2021, 138, 50163.	2.6	7
12	Accurate selfâ€damage detection by electrically conductive epoxy/graphene nanocomposite film. Journal of Applied Polymer Science, 2021, 138, 50452.	2.6	9
13	Stretchable, mechanically resilient, and high electromagnetic shielding polymer/ <scp>MXene</scp> nanocomposites. Journal of Applied Polymer Science, 2021, 138, 50509.	2.6	23
14	Development of high thermally conductive and electrically insulated epoxy nanocomposites with high mechanical performance. Polymer Composites, 2021, 42, 4217-4226.	4.6	12
15	Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering, 2021, 212, 108675.	12.0	110
16	Mechanically robust, highly sensitive and superior cycling performance nanocomposite strain sensors using 3-nm thick graphene platelets. Polymer Testing, 2021, 98, 107178.	4.8	37
17	Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives. Nanotechnology, 2021, 32, 355707.	2.6	10
18	Mechanically strong, stiff, and yet ductile AlSi7Mg/graphene composites by laser metal deposition additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141749.	5.6	11

#	Article	IF	CITATIONS
19	Non-oxidized graphene/metal composites by laser deposition additive manufacturing. Journal of Alloys and Compounds, 2021, 882, 160724.	5 . 5	11
20	Comparative Study of Nanocarbon-Based Flexible Multifunctional Composite Electrodes. ACS Omega, 2021, 6, 2526-2541.	3.5	10
21	Preparation of antimonene nanosheets and their thermoelectric nanocomposites. Composites Communications, 2021, 28, 100968.	6.3	7
22	Nonâ€oxidized graphene/elastomer composite films for wearable strain and pressure sensors with ultraâ€high flexibility and sensitivity. Polymers for Advanced Technologies, 2020, 31, 214-225.	3.2	20
23	Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology, 2020, 31, 075702.	2.6	64
24	Noncovalent Modification of Boron Nitrite Nanosheets for Thermally Conductive, Mechanically Resilient Epoxy Nanocomposites. Industrial & Engineering Chemistry Research, 2020, 59, 20701-20710.	3.7	20
25	Surface-tunable, electrically conductive and inexpensive graphene platelets and their hydrophilic polymer nanocomposites. Polymer, 2020, 205, 122851.	3.8	14
26	Epoxy/graphene film for lifecycle self-sensing and multifunctional applications. Composites Science and Technology, 2020, 198, 108312.	7.8	49
27	Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology, 2020, 31, 465502.	2.6	22
28	Multifunctional Graphene-Based Composite Sponge. Sensors, 2020, 20, 329.	3.8	10
29	A highly flexible, electrically conductive, and mechanically robust graphene/epoxy composite film for its selfâ€damage detection. Journal of Applied Polymer Science, 2020, 137, 48991.	2.6	16
30	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	2.6	31
31	Investigation of flexural properties and failure behaviour of biaxial braided CFRP. Polymer Testing, 2020, 87, 106545.	4.8	5
32	Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chemical Engineering Journal, 2020, 397, 125439.	12.7	61
33	A new method for preparation of functionalized graphene and its epoxy nanocomposites. Composites Part B: Engineering, 2020, 196, 108096.	12.0	41
34	Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer, 2019, 184, 121884.	3.8	77
35	A comparative study of two graphene based elastomeric composite sensors. Polymer Testing, 2019, 80, 106106.	4.8	30
36	Flexible GnPs/EPDM with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Properties. Nano, 2019, 14, 1950075.	1.0	11

#	Article	IF	CITATIONS
37	A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film. Journal of Materials Science, 2019, 54, 10856-10870.	3.7	50
38	Graphene platelets versus phosphorus compounds for elastomeric composites: flame retardancy, mechanical performance and mechanisms. Nanotechnology, 2019, 30, 385703.	2.6	30
39	Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives. Journal of Applied Polymer Science, 2019, 136, 48056.	2.6	56
40	Flexible strain sensors based on epoxy/graphene composite film with long molecular weight curing agents. Journal of Applied Polymer Science, 2019, 136, 47906.	2.6	30
41	Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives. Journal of Adhesion Science and Technology, 2019, 33, 1337-1356.	2.6	45
42	Detection of Physiological Signals Based on Graphene Using a Simple and Low-Cost Method. Sensors, 2019, 19, 1656.	3.8	9
43	Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis. Composites Part A: Applied Science and Manufacturing, 2019, 120, 116-126.	7.6	135
44	Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon, 2018, 136, 387-394.	10.3	79
45	Development of flame-retarding elastomeric composites with high mechanical performance. Composites Part A: Applied Science and Manufacturing, 2018, 109, 257-266.	7.6	26
46	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705.	14.9	183
47	Preparation and microwave-absorbing properties of hollow glass microspheres double-coated with Co–Ni/Fe3O4 composite. Journal of Materials Science: Materials in Electronics, 2017, 28, 8878-8884.	2.2	10
48	Monitoring the glass transition temperature of polymeric composites with carbon nanotube buckypaper sensor. Polymer Testing, 2017, 57, 12-16.	4.8	35
49	Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Composites Science and Technology, 2017, 152, 181-189.	7.8	49
50	Enhancement of mechanical properties of epoxy/graphene nanocomposite. Journal of Physics: Conference Series, 2017, 914, 012036.	0.4	24
51	Free-standing, flexible, electrically conductive epoxy/graphene composite films. Composites Part A: Applied Science and Manufacturing, 2017, 92, 42-50.	7.6	74
52	Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance. Journal Physics D: Applied Physics, 2016, 49, 445308.	2.8	14
53	Monitoring the manufacturing process of glass fiber reinforced composites with carbon nanotube buckypaper sensor. Polymer Testing, 2016, 52, 79-84.	4.8	26
54	Chemically Bonded Sn Nanoparticles Using the Crosslinked Epoxy Binder for High Energyâ€Density Li Ion Battery. Advanced Materials Interfaces, 2016, 3, 1600662.	3.7	17

#	Article	IF	CITATIONS
55	Compressible, electrically conductive, fibre-like, three-dimensional PEDOT-based composite aerogels towards energy storage applications. Composites Science and Technology, 2016, 127, 36-46.	7.8	21
56	Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Composites Science and Technology, 2016, 127, 119-126.	7.8	99
57	PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 2016, 27, 042001.	2.6	113
58	Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13745-13757.	8.0	39
59	Smart thin-film piezoelectric composite sensors based on high lead zirconate titanate content. Structural Health Monitoring, 2015, 14, 214-227.	7. 5	16
60	Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26, 112001.	2.6	119
61	Toughening polymer adhesives using nanosized elastomeric particles. Journal of Materials Research, 2014, 29, 665-674.	2.6	29
62	Superior piezoelectric composite films: taking advantage of carbon nanomaterials. Nanotechnology, 2014, 25, 045501.	2.6	13
63	Nanosilica-toughened polymer adhesives. Materials & Design, 2014, 61, 75-86.	5.1	50
64	Development of polymer composites using modified, high-structural integrity graphene platelets. Composites Science and Technology, 2014, 91, 82-90.	7.8	136
65	Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 2014, 55, 201-210.	3.8	239
66	Effect of interface modification on PMMA/graphene nanocomposites. Journal of Materials Science, 2014, 49, 5838-5849.	3.7	28
67	Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study. Journal of Materials Science, 2014, 49, 5856-5865.	3.7	35
68	Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology, 2014, 25, 125707.	2.6	119
69	Covalently bonded interfaces for polymer/graphene composites. Journal of Materials Chemistry A, 2013, 1, 4255.	10.3	163
70	Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 2013, 24, 165601.	2.6	124
71	A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Advanced Functional Materials, 2012, 22, 2735-2743.	14.9	244
72	Fabrication, Structure and Properties of Epoxy/Metal Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 465-474.	3.6	54

QINGSHI MENG

#	Article	IF	CITATIONS
73	Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer, 2011, 52, 1603-1611.	3.8	466
74	Improvement of adhesive toughness measurement. Polymer Testing, 2011, 30, 243-250.	4.8	28
75	Role of Interface of Epoxy/Clay Nanocomposites and its Effect on Structure-Property Relationship. Advanced Materials Research, 0, 476-478, 859-862.	0.3	1