Paul A Wender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/631268/publications.pdf Version: 2024-02-01

		5891	11303
231	21,122	81	136
papers	citations	h-index	g-index
262	262	262	14674
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanotube Molecular Transporters:  Internalization of Carbon Nanotubeâ^'Protein Conjugates into Mammalian Cells. Journal of the American Chemical Society, 2004, 126, 6850-6851.	6.6	1,284
2	Function-Oriented Synthesis, Step Economy, and Drug Design. Accounts of Chemical Research, 2008, 41, 40-49.	7.6	1,043
3	Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 2000, 6, 1253-1257.	15.2	592
4	Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. Journal of the American Chemical Society, 2004, 126, 9506-9507.	6.6	545
5	Synthesis at the molecular frontier. Nature, 2009, 460, 197-201.	13.7	489
6	Transition Metal Catalyzed [5 + 2] Cycloadditions of Vinylcyclopropanes and Alkynes: A Homolog of the Diels-Alder Reaction for the Synthesis of Seven-Membered Rings. Journal of the American Chemical Society, 1995, 117, 4720-4721.	6.6	394
7	The design of guanidinium-rich transporters and their internalization mechanisms. Advanced Drug Delivery Reviews, 2008, 60, 452-472.	6.6	371
8	Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models. ACS Central Science, 2017, 3, 1103-1113.	5.3	308
9	Arginine-Rich Molecular Transporters for Drug Delivery:  Role of Backbone Spacing in Cellular Uptake. Journal of Medicinal Chemistry, 2002, 45, 3612-3618.	2.9	306
10	Fifteen Years of Cell-Penetrating, Guanidinium-Rich Molecular Transporters: Basic Science, Research Tools, and Clinical Applications. Accounts of Chemical Research, 2013, 46, 2944-2954.	7.6	270
11	Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Advanced Drug Delivery Reviews, 2005, 57, 495-504.	6.6	259
12	The Pinene Path to Taxanes. 6. A Concise Stereocontrolled Synthesis of Taxol. Journal of the American Chemical Society, 1997, 119, 2757-2758.	6.6	253
13	Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12128-12133.	3.3	220
14	Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E448-E456.	3.3	207
15	New reactions and step economy: the total synthesis of $(\hat{A}\pm)$ -salsolene oxide based on the type II transition metal-catalyzed intramolecular [4+4] cycloaddition. Tetrahedron, 2006, 62, 7505-7511.	1.0	194
16	Introduction:Â Frontiers in Organic Synthesis. Chemical Reviews, 1996, 96, 1-2.	23.0	190
17	The First Formal Asymmetric Synthesis of Phorbol. Journal of the American Chemical Society, 1997, 119, 7897-7898.	6.6	185
18	Toward the ideal synthesis and molecular function through synthesis-informed design. Natural Product Reports, 2014, 31, 433-440.	5.2	185

#	Article	IF	CITATIONS
19	A Computationally Designed Rh(I)-Catalyzed Two-Component [5+2+1] Cycloaddition of Ene-vinylcyclopropanes and CO for the Synthesis of Cyclooctenones. Journal of the American Chemical Society, 2007, 129, 10060-10061.	6.6	184
20	First Studies of the Transition Metal-Catalyzed [5+2] Cycloadditions of Alkenes and Vinylcyclopropanes:Â Scope and Stereochemistry. Journal of the American Chemical Society, 1998, 120, 1940-1941.	6.6	181
21	Asymmetric Catalysis of the [5 + 2] Cycloaddition Reaction of Vinylcyclopropanes and π-Systems. Journal of the American Chemical Society, 2006, 128, 6302-6303.	6.6	180
22	Practical Synthesis of Prostratin, DPP, and Their Analogs, Adjuvant Leads Against Latent HIV. Science, 2008, 320, 649-652.	6.0	176
23	On the Mechanism of [Rh(CO)2Cl]2-Catalyzed Intermolecular (5 + 2) Reactions between Vinylcyclopropanes and Alkynes. Journal of the American Chemical Society, 2004, 126, 9154-9155.	6.6	173
24	Transition Metal-Catalyzed [6+2] Cycloadditions of 2-Vinylcyclobutanones and Alkenes:Â A New Reaction for the Synthesis of Eight-Membered Rings. Journal of the American Chemical Society, 2000, 122, 7815-7816.	6.6	171
25	The First Synthesis of a Daphnane Diterpene:  The Enantiocontrolled Total Synthesis of (+)-Resiniferatoxin. Journal of the American Chemical Society, 1997, 119, 12976-12977.	6.6	170
26	Nickel-catalyzed intramolecular [4 + 4]-cycloadditions: a new method for the synthesis of polycycles containing eight-membered rings. Journal of the American Chemical Society, 1986, 108, 4678-4679.	6.6	168
27	Transition Metal-Catalyzed [5 + 2] Cycloadditions of Allenes and Vinylcyclopropanes:Â First Studies of Endoâ``Exo Selectivity, Chemoselectivity, Relative Stereochemistry, and Chirality Transfer. Journal of the American Chemical Society, 1999, 121, 5348-5349.	6.6	168
28	Transition Metal-Catalyzed Hetero-[5 + 2] Cycloadditions of Cyclopropyl Imines and Alkynes:Â Dihydroazepines from Simple, Readily Available Starting Materials. Journal of the American Chemical Society, 2002, 124, 15154-15155.	6.6	168
29	The Pinene Path to Taxanes. 5. Stereocontrolled Synthesis of a Versatile Taxane Precursor. Journal of the American Chemical Society, 1997, 119, 2755-2756.	6.6	167
30	Three-Component Cycloadditions:Â The First Transition Metal-Catalyzed [5+2+1] Cycloaddition Reactions. Journal of the American Chemical Society, 2002, 124, 2876-2877.	6.6	167
31	Nickel-catalyzed intramolecular [4+4] cycloadditions. 4. Enantioselective total synthesis of (+)-asteriscanolide. Journal of the American Chemical Society, 1988, 110, 5904-5906.	6.6	166
32	Studies on tumor promoters. 9. A second-generation synthesis of phorbol. Journal of the American Chemical Society, 1990, 112, 4956-4958.	6.6	164
33	Transition Metal-Catalyzed Intramolecular [4 + 2] Diene-Allene Cycloadditions: A Convenient Synthesis of Angularly Substituted Ring Systems with Provision for Catalyst-Controlled Chemo- and Stereocomplementarity. Journal of the American Chemical Society, 1995, 117, 1843-1844.	6.6	163
34	Oligocarbamate Molecular Transporters:Â Design, Synthesis, and Biological Evaluation of a New Class of Transporters for Drug Delivery. Journal of the American Chemical Society, 2002, 124, 13382-13383.	6.6	163
35	Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5859-E5866.	3.3	162
36	The Practical Synthesis of a Novel and Highly Potent Analogue of Bryostatin. Journal of the American Chemical Society, 2002, 124, 13648-13649.	6.6	159

#	Article	IF	CITATIONS
37	Transition Metal-Catalyzed Intermolecular [5+2] and [5+2+1] Cycloadditions of Allenes and Vinylcyclopropanes. Journal of the American Chemical Society, 2005, 127, 6530-6531.	6.6	159
38	Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nature Chemistry, 2012, 4, 705-710.	6.6	152
39	Nickel-catalyzed intramolecular [4 + 2] dienyne cycloadditions: an efficient new method for the synthesis of polycycles containing cyclohexa-1,4-dienes. Journal of the American Chemical Society, 1989, 111, 6432-6434.	6.6	149
40	Multicomponent Cycloadditions:Â The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO. Journal of the American Chemical Society, 2005, 127, 2836-2837.	6.6	149
41	The First Intermolecular Transition Metal-Catalyzed [5+2] Cycloadditions with Simple, Unactivated, Vinylcyclopropanes. Journal of the American Chemical Society, 2001, 123, 179-180.	6.6	148
42	The Transition Metal-Catalyzed Intermolecular [5+2] Cycloaddition:Â The Homologous Dielsâ^'Alder Reaction. Journal of the American Chemical Society, 1998, 120, 10976-10977.	6.6	147
43	Origins of Differences in Reactivities of Alkenes, Alkynes, and Allenes in [Rh(CO)2Cl]2-Catalyzed (5 + 2) Cycloaddition Reactions with Vinylcyclopropanes. Journal of the American Chemical Society, 2008, 130, 2378-2379.	6.6	145
44	Studies on tumor promoters. 8. The synthesis of phorbol. Journal of the American Chemical Society, 1989, 111, 8957-8958.	6.6	139
45	Molecular transporters for peptides: delivery of a cardioprotective ϵPKC agonist peptide into cells and intact ischemic heart using a transport system, R7. Chemistry and Biology, 2001, 8, 1123-1129.	6.2	139
46	[(arene)Rh(cod)] Complexes as Catalysts for [5+2] Cycloaddition Reactions. Angewandte Chemie - International Edition, 2002, 41, 4550-4553.	7.2	139
47	Cyclocarboamination of Alkynes with Aziridines: Synthesis of 2,3-Dihydropyrroles by a Catalyzed Formal [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2009, 131, 7528-7529.	6.6	138
48	Cyclopentadienone Synthesis by Rhodium(I)-Catalyzed [3 + 2] Cycloaddition Reactions of Cyclopropenones and Alkynes. Journal of the American Chemical Society, 2006, 128, 14814-14815.	6.6	137
49	Efficient Synthetic Access to a New Family of Highly Potent Bryostatin Analogues via a Prins-Driven Macrocyclization Strategy. Journal of the American Chemical Society, 2008, 130, 6658-6659.	6.6	137
50	Molecular Basis for Protein Kinase C Isozyme-Selective Binding:  The Synthesis, Folding, and Phorbol Ester Binding of the Cysteine-Rich Domains of All Protein Kinase C Isozymes. Journal of the American Chemical Society, 1998, 120, 9159-9167.	6.6	136
51	Releasable Luciferinâ^'Transporter Conjugates:Â Tools for the Real-Time Analysis of Cellular Uptake and Release. Journal of the American Chemical Society, 2006, 128, 6526-6527.	6.6	136
52	Molecular Transporters: Synthesis of Oligoguanidinium Transporters and Their Application to Drug Delivery and Real-Time Imaging. ChemBioChem, 2006, 7, 1497-1515.	1.3	133
53	Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11698-11703.	3.3	130
54	Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads. Pure and Applied Chemistry, 2002, 74, 25-31.	0.9	128

#	Article	IF	CITATIONS
55	Electronic and Steric Control of Regioselectivities in Rh(I)-Catalyzed (5 + 2) Cycloadditions: Experiment and Theory. Journal of the American Chemical Society, 2010, 132, 10127-10135.	6.6	128
56	Rhodium-Catalyzed [5Â+Â2] Cycloadditions of Allenes and Vinylcyclopropanes:Â Asymmetric Total Synthesis of (+)-Dictamnol. Organic Letters, 1999, 1, 137-140.	2.4	127
57	Studies on tumor promoters. 7. The synthesis of a potentially general precursor of the tiglianes, daphnanes, and ingenanes. Journal of the American Chemical Society, 1989, 111, 8954-8957.	6.6	125
58	Transition Metal-Catalyzed [5+2] Cycloadditions with Substituted Cyclopropanes:Â First Studies of Regio- and Stereoselectivity. Journal of the American Chemical Society, 1999, 121, 10442-10443.	6.6	117
59	Total Synthesis of Bryostatin 9. Journal of the American Chemical Society, 2011, 133, 9228-9231.	6.6	117
60	Oligocarbonate Molecular Transporters: Oligomerization-Based Syntheses and Cell-Penetrating Studies. Journal of the American Chemical Society, 2009, 131, 16401-16403.	6.6	112
61	Ligand Effects on Rates and Regioselectivities of Rh(I)-Catalyzed (5 + 2) Cycloadditions: A Computational Study of Cyclooctadiene and Dinaphthocyclooctatetraene as Ligands. Journal of the American Chemical Society, 2012, 134, 11012-11025.	6.6	110
62	A New and Selective Catalyst for the [5 + 2] Cycloaddition of Vinylcyclopropanes and Alkynes. Journal of Organic Chemistry, 1998, 63, 4164-4165.	1.7	109
63	A Metal-Catalyzed Intermolecular [5+2] Cycloaddition/Nazarov Cyclization Sequence and Cascade. Journal of the American Chemical Society, 2010, 132, 2532-2533.	6.6	109
64	A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. Journal of the American Chemical Society, 2018, 140, 16140-16151.	6.6	109
65	Synthesis of the First Members of a New Class of Biologically Active Bryostatin Analogues. Journal of the American Chemical Society, 1998, 120, 4534-4535.	6.6	108
66	Designed guanidinium-rich amphipathic oligocarbonate molecular transporters complex, deliver and release siRNA in cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13171-13176.	3.3	107
67	Substituent Effects, Reactant Preorganization, and Ligand Exchange Control the Reactivity in Rh ^I â€Catalyzed (5+2) Cycloadditions between Vinylcyclopropanes and Alkynes. Angewandte Chemie - International Edition, 2008, 47, 3939-3941.	7.2	105
68	Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nature Communications, 2017, 8, 6.	5.8	103
69	Toward the ideal synthesis and transformative therapies: the roles ofÂstep economy and function oriented synthesis. Tetrahedron, 2013, 69, 7529-7550.	1.0	101
70	Transition Metal Catalyzed Cycloadditions:  An Intramolecular [4 + 4] Cycloaddition Strategy for the Efficient Synthesis of Dicyclopenta[a,d]cyclooctene 5â~'8â~'5 Ring Systems. Journal of Organic Chemistry, 1997, 62, 4908-4909.	1.7	100
71	The first metal-catalyzed intramolecular [5+2] cycloadditions of vinylcyclopropanes and alkenes: Scope, stereochemistry, and asymmetric catalysis. Tetrahedron, 1998, 54, 7203-7220.	1.0	100
72	Late-Stage Intermolecular CH Activation for Lead Diversification:  A Highly Chemoselective Oxyfunctionalization of the C-9 Position of Potent Bryostatin Analogues. Organic Letters, 2005, 7, 79-82.	2.4	97

#	Article	IF	CITATIONS
73	Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6721-6726.	3.3	96
74	Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions. Journal of the American Chemical Society, 2014, 136, 17273-17283.	6.6	96
75	Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery. Journal of the American Chemical Society, 2016, 138, 3510-3517.	6.6	96
76	Asymmetric Total Synthesis of (+)-Aphanamol I Based on the Transition Metal Catalyzed [5 + 2] Cycloaddition of Allenes and Vinylcyclopropanes. Organic Letters, 2000, 2, 2323-2326.	2.4	94
77	Asymmetric Synthesis of the Tricyclic Core of NGF-Inducing Cyathane Diterpenes via a Transition-Metal-Catalyzed [5 + 2] Cycloaddition. Organic Letters, 2001, 3, 2105-2108.	2.4	94
78	mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9153-E9161.	3.3	92
79	Total Synthesis of (â^)-Laulimalide. Journal of the American Chemical Society, 2002, 124, 4956-4957.	6.6	91
80	Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV. Science, 2017, 358, 218-223.	6.0	86
81	Studies on tumor promoters. 11. A new [5+2] cycloaddition method and its application to the synthesis of BC ring precursors of phorboids. Journal of Organic Chemistry, 1991, 56, 6267-6269.	1.7	85
82	Local Delivery of <i>Ox40l</i> , <i>Cd80</i> , and <i>Cd86</i> mRNA Kindles Global Anticancer Immunity. Cancer Research, 2019, 79, 1624-1634.	0.4	85
83	Effect of Histone Deacetylase Inhibitors on HIV Production in Latently Infected, Resting CD4+ T Cells From Infected Individuals Receiving Effective Antiretroviral Therapy. Journal of Infectious Diseases, 2012, 206, 765-769.	1.9	83
84	Guanidinium Rich Peptide Transporters and Drug Delivery. Current Protein and Peptide Science, 2003, 4, 105-124.	0.7	83
85	Engineering circular RNA for enhanced protein production. Nature Biotechnology, 2023, 41, 262-272.	9.4	83
86	The rational design of potential chemotherapeutic agents: Synthesis of bryostatin analogues. , 1999, 19, 388-407.		82
87	RhI-Catalyzed CC Bond Activation: Seven-Membered Ring Synthesis by a [6+1] Carbonylative Ring-Expansion Reaction of Allenylcyclobutanes. Angewandte Chemie - International Edition, 2006, 45, 3957-3960.	7.2	82
88	Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10340-10345.	3.3	82
89	Arginine-Based Molecular Transporters:  The Synthesis and Chemical Evaluation of Releasable Taxol-Transporter Conjugates. Organic Letters, 2003, 5, 3459-3462.	2.4	80
90	A New and Practical Five-Carbon Component for Metal-Catalyzed [5 + 2] Cycloadditions:  Preparative Scale Syntheses of Substituted Cycloheptenones. Organic Letters, 2000, 2, 1609-1611.	2.4	79

#	Article	IF	CITATIONS
91	Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities. Nature Chemistry, 2011, 3, 615-619.	6.6	77
92	Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo. Nature Communications, 2016, 7, 10622.	5.8	77
93	Transition Metal-Catalyzed Intramolecular [4 + 2] Cycloadditions:  A Novel Method for the Assembly of Nitrogen Heterocycles and Its Application to Yohimban Alkaloid Synthesis. Journal of Organic Chemistry, 1996, 61, 824-825.	1.7	76
94	Transition Metal-Catalyzed [5 + 2] Cycloadditions of 2-Substituted-1-vinylcyclopropanes:Â Catalyst Control and Reversal of Regioselectivity. Organic Letters, 1999, 1, 2089-2092.	2.4	75
95	Synthetic studies on arene-olepin cycloadditions-VII:1 a three-step total synthesis of (±)-silphinene. Tetrahedron Letters, 1985, 26, 2625-2628.	0.7	73
96	In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell "kick" and "kill" in strategy for virus eradication. PLoS Pathogens, 2017, 13, e1006575.	2.1	73
97	Rhodium Dinaphthocyclooctatetraene Complexes: Synthesis, Characterization and Catalytic Activity in [5+2] Cycloadditions. Angewandte Chemie - International Edition, 2012, 51, 2736-2740.	7.2	72
98	Microtubule-stabilizing agents based on designed laulimalide analogues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8803-8808.	3.3	69
99	The Dienyl Pauson–Khand Reaction. Angewandte Chemie - International Edition, 2003, 42, 1853-1857.	7.2	67
100	Vancomycin–Arginine Conjugate Inhibits Growth of Carbapenem-Resistant <i>E. coli</i> and Targets Cell-Wall Synthesis. ACS Chemical Biology, 2019, 14, 2065-2070.	1.6	67
101	Gene Transfer via Reversible Plasmid Condensation with Cysteine-Flanked, Internally Spaced Arginine-Rich Peptides. Human Gene Therapy, 2003, 14, 1225-1233.	1.4	66
102	Rhodium(I)-Catalyzed [2+2+1] Cycloadditions of 1,3-Dienes, Alkenes, and CO. Journal of the American Chemical Society, 2004, 126, 5948-5949.	6.6	66
103	Metal-Catalyzed [2+2+1] Cycloadditions of 1,3-Dienes, Allenes, and CO. Angewandte Chemie - International Edition, 2006, 45, 2459-2462.	7.2	66
104	An Approach to the Site-Selective Diversification of Apoptolidin A with Peptide-Based Catalysts. Journal of Natural Products, 2009, 72, 1864-1869.	1.5	66
105	Intracellular Cargo Delivery by an Octaarginine Transporter Adapted to Target Prostate Cancer Cells through Cell Surface Protease Activation. Bioconjugate Chemistry, 2006, 17, 787-796.	1.8	65
106	A cellular model of Alzheimer's disease therapeutic efficacy: PKC activation reverses Aβ-induced biomarker abnormality on cultured fibroblasts. Neurobiology of Disease, 2009, 34, 332-339.	2.1	64
107	Nickel(0)-Catalyzed [2 + 2 + 2 + 2] Cycloadditions of Terminal Diynes for the Synthesis of Substituted Cyclooctatetraenes. Journal of the American Chemical Society, 2007, 129, 13402-13403.	6.6	63
108	Dendrimeric Molecular Transporters:  Synthesis and Evaluation of Tunable Polyguanidino Dendrimers That Facilitate Cellular Uptake. Organic Letters, 2005, 7, 4815-4818.	2.4	62

#	Article	IF	CITATIONS
109	Serial [5+2]/[4+2] Cycloadditions: Facile, Preparative, Multi-Component Syntheses of Polycyclic Compounds from Simple, Readily Available Starting Materials. Angewandte Chemie - International Edition, 2001, 40, 3895-3897.	7.2	61
110	Intermolecular Dienyl Pauson–Khand Reaction. Angewandte Chemie - International Edition, 2004, 43, 3076-3079.	7.2	61
111	The Diene Effect: The Design, Development, and Mechanistic Investigation of Metalâ€Catalyzed Dieneâ€yne, Dieneâ€ene, and Dieneâ€allene [2+2+1] Cycloaddition Reactions. European Journal of Organic Chemistry, 2010, 2010, 19-32.	1.2	61
112	Function through Synthesis-Informed Design. Accounts of Chemical Research, 2015, 48, 752-760.	7.6	61
113	Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for <i>in Vitro</i> and <i>in Vivo</i> mRNA Delivery. Journal of the American Chemical Society, 2019, 141, 8416-8421.	6.6	61
114	Studies on Oxidopyrylium [5 + 2] Cycloadditions:  Toward a General Synthetic Route to the C12-Hydroxy Daphnetoxins. Organic Letters, 2006, 8, 5373-5376.	2.4	58
115	Bioorthogonal Catalysis: A General Method To Evaluate Metal-Catalyzed Reactions in Real Time in Living Systems Using a Cellular Luciferase Reporter System. Bioconjugate Chemistry, 2016, 27, 376-382.	1.8	58
116	Structural complexity through multicomponent cycloaddition cascades enabled by dual-purpose, reactivity regenerating 1,2,3-triene equivalents. Nature Chemistry, 2014, 6, 448-452.	6.6	57
117	The Design, Synthesis, and Evaluation of C7 Diversified Bryostatin Analogs Reveals a Hot Spot for PKC Affinity. Organic Letters, 2008, 10, 3331-3334.	2.4	56
118	Rhodium(I)-Catalyzed [4+2+2] Cycloadditions of 1,3-Dienes, Alkenes, and Alkynes for the Synthesis of Cyclooctadienes. Journal of the American Chemical Society, 2006, 128, 5354-5355.	6.6	55
119	Bioengineered Vaults: Self-Assembling Protein Shell–Lipophilic Core Nanoparticles for Drug Delivery. ACS Nano, 2014, 8, 7723-7732.	7.3	54
120	Rhodium(I)-Catalyzed [5+2], [6+2], and [5+2+1] Cycloadditions: New Reactions for Organic Synthesis. , 2005, , 263-299.		53
121	The Synthesis of Highly Substituted Cyclooctatetraene Scaffolds by Metalâ€Catalyzed [2+2+2+2] Cycloadditions: Studies on Regioselectivity, Dynamic Properties, and Metal Chelation. Angewandte Chemie - International Edition, 2009, 48, 7687-7690.	7.2	53
122	Cell-Penetrating, Guanidinium-Rich Molecular Transporters for Overcoming Efflux-Mediated Multidrug Resistance. Molecular Pharmaceutics, 2014, 11, 2553-2565.	2.3	53
123	A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13225-13230.	3.3	52
124	Isoapoptolidin:  Structure and Activity of the Ring-Expanded Isomer of Apoptolidin. Organic Letters, 2002, 4, 3819-3822.	2.4	50
125	Highly Efficient, Facile, Room Temperature Intermolecular [5 + 2] Cycloadditions Catalyzed by Cationic Rhodium(I): One Step to Cycloheptenes and Their Libraries. Organic Letters, 2010, 12, 1604-1607.	2.4	50
126	An Efficient, Scalable Synthesis of the Molecular Transporter Octaarginine via a Segment Doubling Strategyâ€. Organic Letters, 2001, 3, 3229-3232.	2.4	49

#	Article	IF	CITATIONS
127	Synthesis and Biological Evaluation of (â^)-Laulimalide Analogues. Organic Letters, 2003, 5, 3507-3509.	2.4	48
128	Function Oriented Synthesis: The Design, Synthesis, PKC Binding and Translocation Activity of a New Bryostatin Analog. Current Drug Discovery Technologies, 2004, 1, 1-11.	0.6	48
129	A proapoptotic signaling pathway involving RasCRP, Erk, and Bim in B cells. Experimental Hematology, 2009, 37, 122-134.e2.	0.2	48
130	Translating Nature's Library: The Bryostatins and Functionâ€Oriented Synthesis. Israel Journal of Chemistry, 2011, 51, 453-472.	1.0	48
131	Beyond cell penetrating peptides: designed molecular transporters. Drug Discovery Today: Technologies, 2012, 9, e49-e55.	4.0	47
132	Synthesis and biological evaluation of fully synthetic bryostatin analogues. Tetrahedron Letters, 1998, 39, 8625-8628.	0.7	46
133	Triazole Photonucleases:  A New Family of Light Activatable DNA Cleaving Agents. Journal of the American Chemical Society, 1996, 118, 6522-6523.	6.6	45
134	Total Synthesis and Initial Biological Evaluation of New B-Ring-Modified Bryostatin Analogs. Organic Letters, 2006, 8, 5299-5302.	2.4	43
135	Function-Oriented Synthesis: Studies Aimed at the Synthesis and Mode of Action of 1α-Alkyldaphnane Analogues. Organic Letters, 2007, 9, 1829-1832.	2.4	43
136	N-Alkoxyimidazolylidene Transition-Metal Complexes:  Application to [5+2] and [4+2] Cycloaddition Reactions. Organometallics, 2007, 26, 4541-4545.	1.1	43
137	Synthesis and biological evaluation of bryostatin analogues: the role of the A-ring. Tetrahedron Letters, 2000, 41, 1007-1011.	0.7	42
138	[(arene)Rh(cod)]+ Complexes as Catalysts for [5+2] Cycloaddition Reactions. Angewandte Chemie, 2002, 114, 4732-4735.	1.6	42
139	Apoptolidins B and C:  Isolation, Structure Determination, and Biological Activity. Organic Letters, 2005, 7, 3025-3028.	2.4	42
140	Laulimalide and Synthetic Laulimalide Analogues Are Synergistic with Paclitaxel and 2-Methoxyestradiol. Molecular Pharmaceutics, 2006, 3, 457-467.	2.3	41
141	A Concise, Selective Synthesis of the Polyketide Spacer Domain of a Potent Bryostatin Analogue. Organic Letters, 2003, 5, 277-279.	2.4	38
142	A New Synthetic Approach to the C Ring of Known as Well as Novel Bryostatin Analogues. Organic Letters, 2003, 5, 4549-4552.	2.4	38
143	Synthesis and biological evaluation of a new class of bryostatin analogues: the role of the C20 substituent in protein kinase C binding. Tetrahedron Letters, 2000, 41, 6725-6729.	0.7	37
144	Reversible RNA acylation for control of CRISPR–Cas9 gene editing. Chemical Science, 2020, 11, 1011-1016.	3.7	37

#	Article	IF	CITATIONS
145	"Picolog,―a Synthetically-Available Bryostatin Analog, Inhibits Growth of MYC-Induced Lymphoma <i>In Vivo</i> . Oncotarget, 2012, 3, 58-66.	0.8	37
146	Synthesis and PKC Binding of a New Class of A-Ring Diversifiable Bryostatin Analogues Utilizing a Double Asymmetric Hydrogenation and Cross-Coupling Strategy. Organic Letters, 2006, 8, 4581-4584.	2.4	36
147	Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nature Communications, 2022, 13, 121.	5.8	36
148	Toward a Structureâ^'Activity Relationship for Apoptolidin:  Selective Functionalization of the Hydroxyl Group Array. Organic Letters, 2003, 5, 487-490.	2.4	35
149	Design, Synthesis, and Biological Evaluation of a Potent, PKC Selective, B-Ring Analog of Bryostatin. Organic Letters, 2006, 8, 1893-1896.	2.4	35
150	Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10688-10698.	3.3	34
151	An mRNA SARS-CoV-2 Vaccine Employing Charge-Altering Releasable Transporters with a TLR-9 Agonist Induces Neutralizing Antibodies and T Cell Memory. ACS Central Science, 2021, 7, 1191-1204.	5.3	34
152	Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents. Virology, 2018, 520, 83-93.	1.1	33
153	Tetramethyleneethane Equivalents: Recursive Reagents for Serialized Cycloadditions. Journal of the American Chemical Society, 2015, 137, 9088-9093.	6.6	32
154	Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation. Scientific Reports, 2017, 7, 7456.	1.6	32
155	Charge-altering releasable transporters enable phenotypic manipulation of natural killer cells for cancer immunotherapy. Blood Advances, 2020, 4, 4244-4255.	2.5	32
156	Correlation of F0F1-ATPase Inhibition and Antiproliferative Activity of Apoptolidin Analogues. Organic Letters, 2006, 8, 589-592.	2.4	31
157	Isolation, Structure Determination, and Anti-Cancer Activity of Apoptolidin D. Organic Letters, 2007, 9, 691-694.	2.4	31
158	Computer-Guided Design, Synthesis, and Protein Kinase C Affinity of a New Salicylate-Based Class of Bryostatin Analogs. Organic Letters, 2014, 16, 5136-5139.	2.4	31
159	The synthesis of seven-membered rings: General strategies and the design and development of a new class of cycloaddition reactions. Advances in Cycloaddition, 1999, , 1-45.	0.5	31
160	Facile Synthetic Access to and Biological Evaluation of the Macrocyclic Core of Apoptolidin. Organic Letters, 2003, 5, 2299-2302.	2.4	30
161	Rhodium-Catalyzed [5+2] Cycloaddition Reactions in Water. Synlett, 2003, 2003, 1295.	1.0	30
162	Catalytic Efficiency Is a Function of How Rhodium(I) (5 + 2) Catalysts Accommodate a Conserved Substrate Transition State Geometry: Induced Fit Model for Explaining Transition Metal Catalysis. ACS Catalysis, 2015, 5, 1758-1763.	5.5	30

#	Article	IF	CITATIONS
163	Vault Nanoparticles: Chemical Modifications for Imaging and Enhanced Delivery. ACS Nano, 2017, 11, 872-881.	7.3	30
164	Simplified Analogs of Bryostatin with Anticancer Activity Display Greater Potency for Translocation of PKCδ-GFP. Chemistry and Biology, 2004, 11, 1261-1267.	6.2	29
165	Pharmacophore Mapping in the Laulimalide Series:  Total Synthesis of a Vinylogue for a Late-Stage Metathesis Diversification Strategy. Organic Letters, 2006, 8, 4105-4108.	2.4	29
166	Taxol-oligoarginine conjugates overcome drug resistance in-vitro in human ovarian carcinoma. Gynecologic Oncology, 2012, 126, 118-123.	0.6	29
167	Functional DNA Delivery Enabled by Lipid-Modified Charge-Altering Releasable Transporters (CARTs). Biomacromolecules, 2018, 19, 2812-2824.	2.6	29
168	Synthesis of Modified Nucleoside Oligophosphates Simplified: Fast, Pure, and Protecting Group Free. Journal of the American Chemical Society, 2019, 141, 15013-15017.	6.6	29
169	Synthesis and evaluation of designed PKC modulators for enhanced cancer immunotherapy. Nature Communications, 2020, 11, 1879.	5.8	29
170	Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway. Journal of Natural Products, 2016, 79, 680-684.	1.5	28
171	REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS Central Science, 2018, 4, 89-96.	5.3	28
172	Total Synthesis and Biological Evaluation of 11-Desmethyllaulimalide, a Highly Potent Simplified Laulimalide Analogue. Organic Letters, 2006, 8, 1507-1510.	2.4	27
173	Apoptolidins E and F, New Glycosylated Macrolactones Isolated from Nocardiopsis sp Organic Letters, 2009, 11, 5474-5477.	2.4	27
174	Synthesis and mechanistic investigations of pH-responsive cationic poly(aminoester)s. Chemical Science, 2020, 11, 2951-2966.	3.7	26
175	Synthetic Bryostatin Analogues Activate the RasGRP1 Signaling Pathway. Journal of Medicinal Chemistry, 2004, 47, 6638-6644.	2.9	25
176	Propargyltrimethylsilanes as Allene Equivalents in Transition Metal-Catalyzed [5 + 2] Cycloadditions. Organic Letters, 2014, 16, 2923-2925.	2.4	25
177	Sequence Specific DNA Cleavage by Conjugates of Benzotriazoles and Minor Groove Binders. Journal of the American Chemical Society, 1997, 119, 7611-7612.	6.6	24
178	Role of the A-Ring of Bryostatin Analogues in PKC Binding:  Synthesis and Initial Biological Evaluation of New A-Ring-Modified Bryologs. Organic Letters, 2005, 7, 1995-1998.	2.4	24
179	Identification of a Tunable Site in Bryostatin Analogs:  C20 Bryologs through Late Stage Diversification. Organic Letters, 2005, 7, 1177-1180.	2.4	24
180	Function-Oriented Synthesis: Biological Evaluation of Laulimalide Analogues Derived from a Last Step Cross Metathesis Diversification Strategy. Molecular Pharmaceutics, 2008, 5, 829-838.	2.3	24

#	Article	IF	CITATIONS
181	Toward a Biorelevant Structure of Protein Kinase C Bound Modulators: Design, Synthesis, and Evaluation of Labeled Bryostatin Analogues for Analysis with Rotational Echo Double Resonance NMR Spectroscopy. Journal of the American Chemical Society, 2015, 137, 3678-3685.	6.6	24
182	A Phosphoramidite Analogue of Cyclotriphosphate Enables Iterative Polyphosphorylations. Angewandte Chemie - International Edition, 2019, 58, 3928-3933.	7.2	23
183	Bromoacetophenone-Based Photonucleases:Â Photoinduced Cleavage of DNA by 4â€~-Bromoacetophenoneâ^'Pyrrolecarboxamide Conjugates. Organic Letters, 1999, 1, 2117-2120.	2.4	21
184	Guanidinium-Rich, Glycerol-Derived Oligocarbonates: A New Class of Cell-Penetrating Molecular Transporters That Complex, Deliver, and Release siRNA. Molecular Pharmaceutics, 2015, 12, 742-750.	2.3	21
185	Effect of Serum and Antioxidants on the Immunogenicity of Protein Kinase C-Activated Chronic Lymphocytic Leukemia Cells. Journal of Immunotherapy, 2005, 28, 28-39.	1.2	20
186	Improved Protein Kinase C Affinity through Final Step Diversification of a Simplified Salicylate-Derived Bryostatin Analog Scaffold. Organic Letters, 2014, 16, 5140-5143.	2.4	20
187	Clinical Correlates of Human Immunodeficiency Virus–1 (HIV-1) DNA and Inducible HIV-1 RNA Reservoirs in Peripheral Blood in Children With Perinatally Acquired HIV-1 Infection With Sustained Virologic Suppression for at Least 5 Years. Clinical Infectious Diseases, 2020, 70, 859-866.	2.9	20
188	Rhodium(I)-Catalyzed [2+2], [2+2+2], and [2+2+2+2] Cycloadditions of Dienes or Alkynes with a Bis-ene. Organometallics, 2009, 28, 5841-5844.	1.1	19
189	Ynol Ethers as Ketene Equivalents in Rhodium-Catalyzed Intermolecular [5 + 2] Cycloaddition Reactions. Organic Letters, 2017, 19, 5810-5813.	2.4	18
190	The chemistry-medicine continuum: Synthetic, computer, spectroscopic and biological studies on new chemotherapeutic leads. Pure and Applied Chemistry, 1998, 70, 539-546.	0.9	17
191	Function oriented synthesis: preparation and initial biological evaluation of new A-ring-modified bryologs. Tetrahedron, 2011, 67, 9998-10005.	1.0	17
192	Studies on the regio- and diastereo-selective epoxidation of daphnanes and tiglianes. Tetrahedron Letters, 2015, 56, 3423-3427.	0.7	16
193	Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. Journal of Natural Products, 2016, 79, 675-679.	1.5	16
194	Bryostatin 1 Promotes Synaptogenesis and Reduces Dendritic Spine Density in Cortical Cultures through a PKC-Dependent Mechanism. ACS Chemical Neuroscience, 2020, 11, 1545-1554.	1.7	16
195	The Pinene Path to Taxanes. 4. Approaches to Taxol and Taxol Analogs through Elaboration of Aromatic C-Ring Precursors. Journal of Organic Chemistry, 1996, 61, 7662-7663.	1.7	15
196	Delivery of Inorganic Polyphosphate into Cells Using Amphipathic Oligocarbonate Transporters. ACS Central Science, 2018, 4, 1394-1402.	5.3	15
197	<i>In Vivo</i> Targeting of Escherichia coli with Vancomycin-Arginine. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	14
198	The Dienyl Pauson–Khand Reaction. Angewandte Chemie, 2003, 115, 1897-1901.	1.6	13

#	Article	IF	CITATIONS
199	In Situ Detection of Endogenous HIV Activation by Dynamic Nuclear Polarization NMR and Flow Cytometry. International Journal of Molecular Sciences, 2020, 21, 4649.	1.8	13
200	Mechanistic and Computational Studies of Exocyclic Stereocontrol in the Synthesis of Bryostatin-like <i>Cis-</i> 2,6-Disubstituted 4-Alkylidenetetrahydropyrans by Prins Cyclization. Journal of Organic Chemistry, 2013, 78, 104-115.	1.7	12
201	Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy. Molecular Imaging, 2003, 2, 313-323.	0.7	12
202	Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochemical Pharmacology, 2016, 120, 15-21.	2.0	11
203	Impact of Treatment Interruption on HIV Reservoirs and Lymphocyte Subsets in Individuals Who Initiated Antiretroviral Therapy During the Early Phase of Infection. Journal of Infectious Diseases, 2019, 220, 270-274.	1.9	11
204	Tracking HIV Rebound following Latency Reversal Using Barcoded HIV. Cell Reports Medicine, 2020, 1, 100162.	3.3	11
205	Rh(I)-catalyzed cleavage of unactivated C—O bonds — Carbonylative rearrangement reactions of allenyl ethers to 2-carboalkoxy-1,3-dienes. Canadian Journal of Chemistry, 2005, 83, 838-842.	0.6	8
206	Lead Diversification through a Prins-Driven Macrocyclization Strategy: Application to C13-Diversified Bryostatin Analogues. Synthesis, 2013, 45, 1815-1824.	1.2	8
207	A Phosphoramidite Analogue of Cyclotriphosphate Enables Iterative Polyphosphorylations. Angewandte Chemie, 2019, 131, 3968-3973.	1.6	8
208	Synthesis and Tumor-promoting Activities of 12-Epi-phorbol-12,13-dibutyrate. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2429-2436.	0.6	7
209	Photoinduced cleavage of DNA by bromofluoroacetophenone–pyrrolecarboxamide conjugates. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1763-1766.	1.0	7
210	Function-Oriented Synthesis: Design, Synthesis, and Evaluation of Highly Simplified Bryostatin Analogues. Journal of Organic Chemistry, 2020, 85, 15116-15128.	1.7	7
211	Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation. Cell Chemical Biology, 2021, 28, 537-545.e4.	2.5	7
212	Synthesis of 1-(2-naphthoyl) benzotriazoles as photoactivated DNA cleaving agents. Archives of Pharmacal Research, 1997, 20, 197-199.	2.7	6
213	A New Class of Simplified Phorbol Ester Analogues: Synthesis and Binding to PKC and ηPKC-C1B (ηPKC-CRD2). Organic Letters, 1999, 1, 1009-1012.	2.4	6
214	Photocleavage of DNA by 4′-bromoacetophenone analogs. Archives of Pharmacal Research, 2001, 24, 39-43.	2.7	5
215	Bryostatin analogue-induced apoptosis in mantle cell lymphoma cell lines. Experimental Hematology, 2012, 40, 646-656.e2.	0.2	5
216	Function through bio-inspired, synthesis-informed design: step-economical syntheses of designed kinase inhibitors. Organic Chemistry Frontiers, 2014, 1, 1166-1171.	2.3	5

#	Article	IF	CITATIONS
217	Fingolimod-Conjugated Charge-Altering Releasable Transporters Efficiently and Specifically Deliver mRNA to Lymphocytes In Vivo and In Vitro. Biomacromolecules, 2022, 23, 2976-2988.	2.6	5
218	Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents. Journal of Cellular Physiology, 2018, 233, 1523-1534.	2.0	4
219	Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy. Molecular Imaging, 2003, 2, 153535002003031.	0.7	2
220	Design and synthesis of new DNA photocleavers, 4′-bromoacetophenone-pyrrolecarboxamide hybrid compounds. Archives of Pharmacal Research, 2000, 23, 585-588.	2.7	1
221	Molecular Understanding of Cellular Uptake by Arginine-Rich Cell Penetrating Peptides. ACS Symposium Series, 2006, , 166-181.	0.5	1
222	Beyond Natural Products: Synthetic Analogues of Bryostatin 1. , 0, , 125-162.		1
223	Serial [5+2]/[4+2] Cycloadditions: Facile, Preparative, Multi-Component Syntheses of Polycyclic Compounds from Simple, Readily Available Starting Materials This research was supported by grant CHE-9800445 from the National Science Foundation. The Stanford Graduate Fellowship (M.J.C.S. and) Tj ETQq1 1	. 0. 7 84314	↓ 1gBT /Over
224	The Pinene Path to Taxanes. ACS Symposium Series, 1994, , 326-339.	0.5	0
225	Transition Metal-Catalyzed Hetero-[5 + 2] Cycloadditions of Cyclopropyl Imines and Alkynes: Dehydroazepines from Simple, Readily Available Starting Materials ChemInform, 2003, 34, no.	0.1	0
226	The Dienyl Pauson—Khand Reaction ChemInform, 2003, 34, no.	0.1	0
227	Rhodium(I)-Catalyzed [2 + 2 + 1] Cycloadditions of 1,3-Dienes, Alkenes, and CO ChemInform, 2004, 35, no.	0.1	0
228	Intermolecular Dienyl Pauson—Khand Reaction ChemInform, 2004, 35, no.	0.1	0
229	Multicomponent Cycloadditions: The Four-Component [5 + 1 + 2 + 1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO ChemInform, 2005, 36, no.	0.1	0
230	Dendrimeric Molecular Transporters: Synthesis and Evaluation of Tunable Polyguanidino Dendrimers that Facilitate Cellular Uptake ChemInform, 2006, 37, no.	0.1	0
231	Editorial: To Eun Lee on His 65th Birthday. Chemistry - an Asian Journal, 2011, 6, 1900-1900.	1.7	0