## **Thierry Fontaine**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6312229/publications.pdf

Version: 2024-02-01

|          |                | 57758        | 74163          |
|----------|----------------|--------------|----------------|
| 88       | 6,013          | 44           | 75             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 91       | 91             | 91           | 5213           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Molecular Organization of the Alkali-insoluble Fraction of Aspergillus fumigatus Cell Wall. Journal of Biological Chemistry, 2000, 275, 27594-27607.                                                                                 | 3.4 | 342       |
| 2  | Glycosylphosphatidylinositol-anchored Glucanosyltransferases Play an Active Role in the Biosynthesis of the Fungal Cell Wall. Journal of Biological Chemistry, 2000, 275, 14882-14889.                                               | 3.4 | 308       |
| 3  | Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO Journal, 2000, 19, 4473-4484.                                               | 7.8 | 296       |
| 4  | Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.                                                                    | 4.7 | 256       |
| 5  | Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12558-12563.                                                   | 7.1 | 222       |
| 6  | Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002372.                                                                                                           | 4.7 | 185       |
| 7  | The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.                                                                 | 4.7 | 167       |
| 8  | Immune Sensing of <i>Aspergillus fumigatus</i> Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. Journal of Immunology, 2009, 183, 2407-2414.                                                | 0.8 | 159       |
| 9  | Deletion of <i>GEL2</i> encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in <i>Aspergillus fumigatus</i> Molecular Microbiology, 2005, 56, 1675-1688.                                                  | 2.5 | 146       |
| 10 | A secreted antiâ€activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in ⟨i⟩Shigella flexneri⟨/i⟩. Molecular Microbiology, 2005, 56, 1627-1635.     | 2.5 | 121       |
| 11 | A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.                                           | 4.7 | 117       |
| 12 | Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 13401-13412.                                                                                                                       | 3.4 | 116       |
| 13 | A Novel $\hat{l}^2$ -( , , )-Glucanosyltransferase from the Cell Wall of Aspergillus fumigatus. Journal of Biological Chemistry, 1996, 271, 26843-26849.                                                                             | 3.4 | 114       |
| 14 | Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Molecular Microbiology, 1997, 24, 203-216.                                                             | 2.5 | 110       |
| 15 | Cell wall $\hat{l}\pm 1$ -3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genetics and Biology, 2010, 47, 707-712.                                                                           | 2.1 | 108       |
| 16 | Aspergillus Cell Wall and Biofilm. Mycopathologia, 2014, 178, 371-377.                                                                                                                                                               | 3.1 | 108       |
| 17 | Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Molecular Microbiology, 2007, 64, 771-781.                                                                 | 2.5 | 102       |
| 18 | Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides. Journal of Biological Chemistry, 2014, 289, 1243-1256. | 3.4 | 102       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Molecular Microbiology, 1999, 32, 471-483.                         | 2.5  | 101       |
| 20 | The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast, 2007, 24, 297-308.                                                                         | 1.7  | 99        |
| 21 | Modulation of Intestinal Inflammation by Yeasts and Cell Wall Extracts: Strain Dependence and Unexpected Anti-Inflammatory Role of Glucan Fractions. PLoS ONE, 2012, 7, e40648.                       | 2.5  | 96        |
| 22 | Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology (United Kingdom), 1998, 144, 3079-3086.                                                                                | 1.8  | 89        |
| 23 | Glycosylphosphatidylinositol-anchored Fungal Polysaccharide in Aspergillus fumigatus. Journal of Biological Chemistry, 2005, 280, 39835-39842.                                                        | 3.4  | 89        |
| 24 | Recombinant antigens as diagnostic markers for aspergillosis. Diagnostic Microbiology and Infectious Disease, 2006, 55, 279-291.                                                                      | 1.8  | 88        |
| 25 | Galactofuranose attenuates cellular adhesion of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2009, 11, 1612-1623.                                                                            | 2.1  | 87        |
| 26 | $\hat{l}^2(1-3)$ Glucanosyltransferase Gel4p Is Essential for Aspergillus fumigatus. Eukaryotic Cell, 2010, 9, 1294-1298.                                                                             | 3.4  | 84        |
| 27 | Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnology Letters, 1993, 15, 567-572.                                  | 2.2  | 82        |
| 28 | Screening of Escherichia coli Species Biodiversity Reveals New Biofilm-Associated Antiadhesion Polysaccharides. MBio, 2011, 2, e00043-11.                                                             | 4.1  | 81        |
| 29 | Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. Journal of Infectious Diseases, 2017, 216, 1281-1294. | 4.0  | 81        |
| 30 | Galactosaminogalactan activates the inflammasome to provide host protection. Nature, 2020, 588, 688-692.                                                                                              | 27.8 | 78        |
| 31 | Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology, 2003, 13, 169-177.                                                        | 2.5  | 73        |
| 32 | Purification and Characterization of an Endo-1,3-beta-Glucanase from Aspergillus fumigatus. FEBS Journal, 1997, 243, 315-321.                                                                         | 0.2  | 72        |
| 33 | Characterization of a New β(1–3)-Glucan Branching Activity of Aspergillus fumigatus. Journal of Biological Chemistry, 2010, 285, 2386-2396.                                                           | 3.4  | 72        |
| 34 | A Polysaccharide Virulence Factor of a Human Fungal Pathogen Induces Neutrophil Apoptosis via NK Cells. Journal of Immunology, 2014, 192, 5332-5342.                                                  | 0.8  | 68        |
| 35 | Molecular Mechanisms of Yeast Cell Wall Glucan Remodeling. Journal of Biological Chemistry, 2009, 284, 8461-8469.                                                                                     | 3.4  | 67        |
| 36 | Identification of the catalytic residues of the first family of β(1–3)glucanosyltransferases identified in fungi. Biochemical Journal, 2000, 347, 741-747.                                            | 3.7  | 66        |

3

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans.<br>Molecular Microbiology, 2003, 49, 131-141.                                                                                             | 2.5  | 62        |
| 38 | Chemical Organization of the Cell Wall Polysaccharide Core of Malassezia restricta. Journal of Biological Chemistry, 2014, 289, 12647-12656.                                                                                              | 3.4  | 62        |
| 39 | Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus The GenBank accession number for the A. fumigatus PHOA sequence reported in this paper is AF462065 Microbiology (United Kingdom), 2002, 148, 2819-2829. | 1.8  | 61        |
| 40 | A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nature Communications, 2021, 12, 6346.                                                                                                    | 12.8 | 54        |
| 41 | Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. FEBS Journal, 2004, 271, 3635-3645.                                              | 0.2  | 49        |
| 42 | Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets. Journal of Infectious Diseases, 2015, 212, 1140-1149.                                                     | 4.0  | 49        |
| 43 | Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer. Mycologia, 2016, 108, 572-580.                                                                                                                                | 1.9  | 48        |
| 44 | Glycosylinositolphosphoceramides in Aspergillus Fumigatus. Glycobiology, 2007, 18, 84-96.                                                                                                                                                 | 2.5  | 47        |
| 45 | Characterization of the endo- $\hat{1}^2$ -1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genetics and Biology, 2008, 45, 542-553.                                                             | 2.1  | 46        |
| 46 | Biosynthesis of cell wall mannan in the conidium and the mycelium of <i>Aspergillus</i> fumigatus. Cellular Microbiology, 2016, 18, 1881-1891.                                                                                            | 2.1  | 46        |
| 47 | Differential patterns of activity displayed by two exo-beta-1,3-glucanases associated with the Aspergillus fumigatus cell wall. Journal of Bacteriology, 1997, 179, 3154-3163.                                                            | 2.2  | 44        |
| 48 | The βâ€1,3â€glucanosyltransferase gas4p is essential for ascospore wall maturation and spore viability in <i>Schizosaccharomyces pombe </i> ). Molecular Microbiology, 2008, 68, 1283-1299.                                               | 2.5  | 41        |
| 49 | Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall Journal of Biological Chemistry, 2000, 275, 41528-41530.                                                                                       | 3.4  | 39        |
| 50 | Biochemical characterization and surfactant properties of horse allergens. FEBS Journal, 2001, 268, 3126-3136.                                                                                                                            | 0.2  | 36        |
| 51 | UGE1 and UGE2 Regulate the UDP-Glucose/UDP-Galactose Equilibrium in Cryptococcus neoformans. Eukaryotic Cell, 2008, 7, 2069-2077.                                                                                                         | 3.4  | 36        |
| 52 | Comparative functional analysis of the <i>OCH1</i> mannosyltransferase families in <i>Aspergillus fumigatus</i> and <i>Saccharomyces cerevisiae</i> Yeast, 2010, 27, 625-636.                                                             | 1.7  | 35        |
| 53 | Biotinylated Oligo-α-(1 â†' 4)- $<$ scp>d $<$ /scp>-galactosamines and Their N-Acetylated Derivatives: α-Stereoselective Synthesis and Immunology Application. Journal of the American Chemical Society, 2020, 142, 1175-1179.            | 13.7 | 35        |
| 54 | The <i>Schizosaccharomyces pombe</i> endoâ€1,3â€Î²â€glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Molecular Microbiology, 2008, 69, 188-200.                                              | 2.5  | 34        |

| #  | Article                                                                                                                                                                                                                               | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Novel mouse monoclonal antibodies specifically recognize Aspergillus fumigatus galactomannan. PLoS ONE, 2018, 13, e0193938.                                                                                                           | 2.5  | 34        |
| 56 | From the surface to the inner layer of the fungal cell wall. Biochemical Society Transactions, 1997, 25, 194-199.                                                                                                                     | 3.4  | 33        |
| 57 | Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale, 2015, 7, 14996-15004.                                                                           | 5.6  | 33        |
| 58 | $\hat{l}^2(1,3)$ -Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe. PLoS ONE, 2010, 5, e14046.                                                                         | 2.5  | 32        |
| 59 | Characterization of glucuronic acid containing glycolipid in Aspergillus fumigatus mycelium.<br>Carbohydrate Research, 2009, 344, 1960-1967.                                                                                          | 2.3  | 31        |
| 60 | Two KTR Mannosyltransferases Are Responsible for the Biosynthesis of Cell Wall Mannans and Control Polarized Growth in <i>Aspergillus fumigatus</i> . MBio, 2019, 10, .                                                               | 4.1  | 31        |
| 61 | Soluble and glyco-lipid modified baculovirus Plasmodium falciparum C-terminal merozoite surface protein 1, two forms of a leading malaria vaccine candidate. Vaccine, 2006, 24, 5997-6008.                                            | 3.8  | 30        |
| 62 | The Glycosylphosphatidylinositol-Anchored <i>DFG</i> Family Is Essential for the Insertion of Galactomannan into the β-(1,3)-Glucan–Chitin Core of the Cell Wall of Aspergillus fumigatus. MSphere, 2019, 4, .                        | 2.9  | 28        |
| 63 | Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. Journal of Fungi (Basel, Switzerland), 2020, 6, 283.                            | 3.5  | 28        |
| 64 | Disruption of the <i>Bcchs3a</i> Chitin Synthase Gene in <i>Botrytis cinerea</i> Is Responsible for Altered Adhesion and Overstimulation of Host Plant Immunity. Molecular Plant-Microbe Interactions, 2010, 23, 1324-1334.           | 2.6  | 26        |
| 65 | Functional Genomic and Biochemical Analysis Reveals Pleiotropic Effect of Congo Red on Aspergillus fumigatus. MBio, 2021, 12, .                                                                                                       | 4.1  | 24        |
| 66 | Isolation and characterisation of hemicelluloses from sunflower hulls. Carbohydrate Research, 1993, 243, 323-332.                                                                                                                     | 2.3  | 23        |
| 67 | Potential of Chemically Synthesized Oligosaccharides To Define the Carbohydrate Moieties of the Fungal Cell Wall Responsible for the Human Immune Response, Using Aspergillus fumigatus Galactomannan as a Model. MSphere, 2020, 5, . | 2.9  | 23        |
| 68 | Structural investigation of an acidic polysaccharide from a deep-sea hydrothermal vent marine bacterium. Food Hydrocolloids, 1991, 5, 171-172.                                                                                        | 10.7 | 22        |
| 69 | Identification of the catalytic residues of the first family of $\hat{l}^2(1\hat{a}\in 3)$ glucanosyltransferases identified in fungi. Biochemical Journal, 2000, 347, 741.                                                           | 3.7  | 21        |
| 70 | Characterization of Glycoside Hydrolase Family 5 Proteins in Schizosaccharomyces pombe. Eukaryotic Cell, 2010, 9, 1650-1660.                                                                                                          | 3.4  | 20        |
| 71 | Identification of two glycosylated components of Mycoplasma penetrans: a surface-exposed capsular polysaccharide and a glycolipid fraction. Microbiology (United Kingdom), 1998, 144, 1247-1255.                                      | 1.8  | 19        |
| 72 | Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 2017, 141, 9-15.                                                                                                                                       | 2.6  | 19        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Glycosylphosphatidylinositol Anchors from Galactomannan and GPI-Anchored Protein Are<br>Synthesized by Distinct Pathways in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2018,<br>4, 19.            | 3.5 | 19        |
| 74 | Analysis of pyruvic acid acetal containing polysaccharides by methanolysis and reductive cleavage methods. Analytical Biochemistry, 1991, 199, 154-161.                                                              | 2.4 | 18        |
| 75 | Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.                        | 3.9 | 18        |
| 76 | A new procedure for the reduction of uronic acid containing polysaccharides. Journal of Microbiological Methods, 1994, 20, 149-157.                                                                                  | 1.6 | 16        |
| 77 | In Vitro Biosynthesis of Glycosylphosphatidylinositol inAspergillus fumigatusâ€. Biochemistry, 2004, 43, 15267-15275.                                                                                                | 2.5 | 16        |
| 78 | Exopolysaccharide structure from Bacillus circulans. FEBS Journal, 1991, 196, 107-113.                                                                                                                               | 0.2 | 11        |
| 79 | Cell Wall of Aspergillus fumigatus: a Dynamic Structure. , 2014, , 169-183.                                                                                                                                          |     | 10        |
| 80 | Fungal cell wall components modulate our immune system. Cell Surface, 2021, 7, 100067.                                                                                                                               | 3.0 | 10        |
| 81 | Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates HUVEC proteins related to inflammatory and stress responses. Journal of Proteomics, 2017, 151, 83-96.                  | 2.4 | 9         |
| 82 | Differentiation of Capsular Polysaccharides from <i>Acetobacter diazotrophicus</i> Strains Isolated from Sugarcane. Microbiology and Immunology, 1995, 39, 237-242.                                                  | 1.4 | 7         |
| 83 | Dataset of differentially regulated proteins in HUVECs challenged with wild type and UGM1 mutant Aspergillus fumigatus strains. Data in Brief, 2016, 9, 24-31.                                                       | 1.0 | 6         |
| 84 | Bacterial cell wallâ€degrading enzymes induce basidiomycete natural product biosynthesis. Environmental Microbiology, 2021, 23, 4360-4371.                                                                           | 3.8 | 5         |
| 85 | Enzymic Studies of the Distribution Pattern of 4-O-Methylglucuronic Acid Residues in Glucuronoxylans from Sunflower Hulls. Bioscience, Biotechnology and Biochemistry, 1992, 56, 508-509.                            | 1.3 | 4         |
| 86 | Surfactant protein D inhibits growth, alters cell surface polysaccharide exposure and immune activation potential of Aspergillus fumigatus. Cell Surface, 2022, 8, 100072.                                           | 3.0 | 4         |
| 87 | Molecular characterization of a cell wall-associated ß(1-3)endoglucanase of Aspergillus fumigatus.<br>Medical Mycology, 2002, 40, 455-464.                                                                           | 0.7 | 2         |
| 88 | First Report of CD4 Lymphopenia and Defective Neutrophil Functions in a Patient with Amebiasis Associated with CMV Reactivation and Severe Bacterial and Fungal Infections. Frontiers in Microbiology, 2017, 8, 203. | 3.5 | 1         |