Wolfram Heimbrodt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6311295/publications.pdf

Version: 2024-02-01

81 1,691 papers citations

22
h-index

39 g-index

82 all docs

82 docs citations 82 times ranked 1655 citing authors

#	Article	IF	CITATIONS
1	The influence of growth interruption on the luminescence properties of Ga(As,Sb)-based type II heterostructures. Journal of Luminescence, 2021, 231, 117817.	3.1	1
2	Influence of Mg-doping on the characteristics of ZnO photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2021, 23, 8393-8402.	2.8	10
3	Transfer mechanisms in semiconductor hybrids with colloidal core/shell quantum dots on ZnSe substrates. Nanotechnology, 2020, 31, 505714.	2.6	2
4	Spin-Layer and Spin-Valley Locking in CVD-Grown AA′- and AB-Stacked Tungsten-Disulfide Bilayers. Journal of Physical Chemistry C, 2019, 123, 21813-21821.	3.1	27
5	Spin-Layer- and Spin-Valley-Locking Due to Symmetry in Differently-Stacked Tungsten Disulfide Bilayers. , 2019, , .		O
6	Correlation of optical properties and interface morphology in type-II semiconductor heterostructures. Journal of Physics Condensed Matter, 2019, 31, 014001.	1.8	3
7	The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers. Semiconductors, 2018, 52, 565-571.	0.5	14
8	Optical determination of charge transfer times from indoline dyes to ZnO in solid state dye-sensitized solar cells. AIP Advances, 2018, 8, 055218.	1.3	3
9	Recombination dynamics of type-II excitons in (Ga,In)As/GaAs/Ga(As,Sb) heterostructures. Nanotechnology, 2017, 28, 025701.	2.6	5
10	Interfacial Molecular Packing Determines Exciton Dynamics in Molecular Heterostructures: The Case of Pentacene–Perfluoropentacene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42020-42028.	8.0	15
11	Optical and Electrochemical Properties of Anthraquinone Imine Based Dyes for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2016, 2016, 756-767.	2.4	8
12	Correlation of the nanostructure with optoelectronic properties during rapid thermal annealing of Ga(NAsP) quantum wells grown on Si(001) substrates. Journal of Applied Physics, 2016, 119, 025705.	2.5	6
13	Band offset in (Ga, In)As/Ga(As, Sb) heterostructures. Journal of Applied Physics, 2016, 120, .	2.5	5
14	Charge transfer at organic-inorganic interfacesâ€"Indoline layers on semiconductor substrates. Journal of Applied Physics, 2016, 120, .	2.5	3
15	Influence of growth temperature and disorder on spectral and temporal properties of Ga(NAsP) heterostructures. Journal of Applied Physics, 2016, 119, .	2.5	7
16	Charge transfer luminescence in (GaIn)As/GaAs/Ga(NAs) double quantum wells. Journal of Luminescence, 2016, 175, 255-259.	3.1	2
17	Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector. Scientific Reports, 2016, 6, 28224.	3.3	16
18	Temperature-resolved optical spectroscopy of pentacene polymorphs: variation of herringbone angles in single-crystals and interface-controlled thin films. Physical Chemistry Chemical Physics, 2016, 18, 3825-3831.	2.8	25

#	Article	IF	Citations
19	Time-resolved photoluminescence of Ga(NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing. Thin Solid Films, 2016, 613, 55-58.	1.8	5
20	Excitonic transitions in highly efficient (Galn)As/Ga(AsSb) type-II quantum-well structures. Applied Physics Letters, 2015, 107, 182104.	3.3	14
21	Intense Intrashell Luminescence of Eu-Doped Single ZnO Nanowires at Room Temperature by Implantation Created Eu–O _i Complexes. Nano Letters, 2014, 14, 4523-4528.	9.1	63
22	Annealing effects on the composition and disorder of Ga(N,As,P) quantum wells on silicon substrates for laser application. Journal of Crystal Growth, 2014, 402, 169-174.	1.5	9
23	Intense intraâ€3d luminescence and waveguide properties of single Coâ€doped ZnO nanowires. Physica Status Solidi - Rapid Research Letters, 2013, 7, 886-889.	2.4	9
24	Double-scaled disorder in Ga(N,As,P)/GaP multiquantum wells. Journal of Luminescence, 2013, 133, 125-128.	3.1	6
25	Luminescence and energy transfer processes in ensembles and single Mn or Tb doped ZnS nanowires. Journal of Applied Physics, 2013, 113, 073506.	2.5	5
26	Ferromagnetic phase transition in zinc blende (Mn,Cr)S-layers grown by molecular beam epitaxy. Applied Physics Letters, 2012, 100, .	3.3	5
27	Synthesis and characterization of organically linked ZnO nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2212-2216.	1.8	0
28	Energy scaling of compositional disorder in Ga(N,P,As)/GaP quantum well structures. Physical Review B, 2012, 86, .	3.2	16
29	Optical measurements of field-induced phenomena of the magnetic phase transition in quasi 2D MnS layers grown by MBE. Journal of Nanoparticle Research, 2011, 13, 5635-5640.	1.9	4
30	Defect induced changes on the excitation transfer dynamics in ZnS/Mn nanowires. Nanoscale Research Letters, 2011, 6, 228.	5.7	5
31	Temperature dependent optical properties of pentacene films on zinc oxide. Applied Physics Letters, 2011, 99, 211102.	3.3	30
32	Dimensional dependence of the energy transfer in MBE grown MnS layers. Solid State Communications, 2010, 150, 1092-1094.	1.9	13
33	Optical and magnetic properties of quasi oneâ€dimensional dilute magnetic ZnMnS and antiferromagnetic MnS. Physica Status Solidi (B): Basic Research, 2010, 247, 2522-2536.	1.5	7
34	Tailoring the properties of semiconductor nanowires using ion beams. Physica Status Solidi (B): Basic Research, 2010, 247, 2329-2337.	1.5	18
35	Energy transfer in ZnSe/(Zn,Mn)Se double quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1639-1641.	0.8	3
36	Optical studies on paramagnetic/superparamagnetic ZnO:Co films grown by magnetron sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1655-1657.	0.8	0

#	Article	IF	CITATIONS
37	Peculiarities of the photoluminescence of metastable $Ga(N,As,P)/GaP$ quantum well structures. Physical Review B, 2010, 82, .	3.2	40
38	Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: The role of reabsorption. Journal of Applied Physics, 2009, 106, .	2.5	31
39	Microscopic modeling of the optical properties of dilute nitride semiconductor gain materials. , 2009,		O
40	Optical properties of Ga(NAsP) lattice matched to Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2638-2643.	0.8	2
41	Influence of nonâ€random incorporation of Mn ions on the magnetotransport properties of Ga _{1â€"<i>x</i>xxxxxxx<}	0.8	1
42	Metal insulator transition in nâ∈BGaInAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 858-861.	0.8	4
43	Seebeck coefficients of n-type (Ga,In)(N,As), (B,Ga,In)As, and GaAs. Applied Physics Letters, 2008, 93, 042107.	3.3	17
44	Dimensional dependence of the dynamics of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi><mml:mspace width="0.2em"></mml:mspace><mml:mn>3</mml:mn><mml:msup><mml:mi>d</mml:mi><mml:mn>5</mml:mn></mml:msup><td>3.2 ><td>13 ath>luminesco</td></td></mml:mrow></mml:math>	3.2 > <td>13 ath>luminesco</td>	13 ath>luminesco
45	in (Zn, Mn)S nanowires and nanobelts. Physical Review B, 2007, 76, . Mechanisms of enhancement of light emission in nanostructures of Il–VI compounds doped with manganese. Low Temperature Physics, 2007, 33, 192-196.	0.6	8
46	Quantitative description of the temporal behavior of the internalMn3d5luminescence in ensembles ofZn0.99Mn0.01Squantum dots. Physical Review B, 2007, 75, .	3.2	12
47	Hydrostatic pressure experiments on dilute nitride alloys. Physica Status Solidi (B): Basic Research, 2007, 244, 24-31.	1.5	3
48	Vibrational properties of GaP and GaP1–xNx under hydrostatic pressures up to 30 GPa. Physica Status Solidi (B): Basic Research, 2007, 244, 336-341.	1.5	11
49	Effect of localized B and N states on the magneto-transport of (B,Ga,In)As and (Ga,In)(N,As). Physica Status Solidi (B): Basic Research, 2007, 244, 431-436.	1.5	10
50	Concentration and size dependence of the dynamics of the Mn 3d5 luminescence in wire-like arrangements of (Zn,Mn)S nanoparticles. Physica Status Solidi (B): Basic Research, 2006, 243, 839-843.	1.5	4
51	Magnetic Interactions in Granular Paramagnetic–Ferromagnetic GaAs: Mn/MnAs Hybrids. Journal of Superconductivity and Novel Magnetism, 2006, 18, 315-320.	0.5	23
52	Experimental and theoretical investigation of the conduction band edge of GaNxP1â^'x. Physical Review B, 2006, 74, .	3.2	25
53	Comparison of the Magnetic and Optical Properties of Wideâ€Gap (II,Mn)VI Nanostructures Confined in Mesoporous Silica. European Journal of Inorganic Chemistry, 2005, 2005, 3597-3611.	2.0	28
54	Cd1-xMnxS Diluted Magnetic Semiconductors as Nanostructured Guest Species in Mesoporous Thin-Film Silica Host Media. Advanced Functional Materials, 2005, 15, 168-172.	14.9	28

#	Article	IF	Citations
55	Magnetic Interactions in Granular Paramagnetic-Ferromagnetic GaAs:Mn/MnAs Hybrids. Lecture Notes in Physics, 2005, , 167-184.	0.7	0
56	Type I-type II transition in InGaAs–GaNAs heterostructures. Applied Physics Letters, 2005, 86, 081903.	3.3	15
57	Vibrational properties of GaAs 0.915 N 0.085 under hydrostatic pressures up to 20 GPa. Physical Review B, 2005, 71, .	3.2	14
58	Tuning of the averagepâ´dexchange in (Ga,Mn)As by modification of the Mn electronic structure. Physical Review B, 2004, 70, .	3.2	15
59	Hopping relaxation of excitons in GalnNAs/GaNAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 109-112.	0.8	43
60	Formation of Zn1-xMnxS Nanowires within Mesoporous Silica of Different Pore Sizes. Journal of the American Chemical Society, 2004, 126, 797-807.	13.7	96
61	Influence of Codoping on the Magnetoresistance of Paramagnetic (Ga,Mn)As. Journal of Superconductivity and Novel Magnetism, 2003, 16, 159-162.	0.5	5
62	Regular Arrays of (Zn,Mn)S Quantum Wires with Well-Defined Diameters in the Nanometer Range. Journal of Superconductivity and Novel Magnetism, 2003, 16, 99-102.	0.5	3
63	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2003, 16, 423-426.	0.5	2
64	Correlation between lasing properties and band alignment of edge emitting lasers with (Ga,In)(N,As)/Ga(N,As) active regions. Physica Status Solidi (B): Basic Research, 2003, 235, 417-422.	1.5	0
65	Intralayer and interlayer energy transfer from excitonic states into the Mn3d5shell in diluted magnetic semiconductor structures. Physical Review B, 2003, 68, .	3.2	28
66	Interband transitions of quantum wells and device structures containing Ga(N, As) and (Ga, In)(N, As). Semiconductor Science and Technology, 2002, 17, 830-842.	2.0	43
67	Spin injection, spin transport and spin coherence. Semiconductor Science and Technology, 2002, 17, 285-297.	2.0	49
68	Ordered Arrays of II/VI Diluted Magnetic Semiconductor Quantum Wires: Formation within Mesoporous MCM-41 Silica. Chemistry - A European Journal, 2002, 8, 185-194.	3.3	77
69	Modification of the Magnetic and Electronic Properties of Ordered Arrays of (II, Mn)VI Quantum Wires Due to Reduced Lateral Dimensions. Physica Status Solidi (B): Basic Research, 2002, 229, 31-34.	1.5	22
70	Spin-Dependent Energy Transfer from Exciton States into the Mn2+(3d5) Internal Transitions. Physica Status Solidi (B): Basic Research, 2002, 229, 781-785.	1.5	14
71	Ferromagnetic resonance studies of (Ga,Mn)As with MnAs clusters. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 572-576.	2.7	44
72	Spin-Dependent Energy Transfer from Exciton States into the Mn2+(3d5) Internal Transitions., 2002, 229, 781.		1

#	Article	IF	CITATIONS
73	Monitoring the sign reversal of the valence band exchange integral in (Ga,Mn)As. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 175-180.	2.7	30
74	Optical characterisation of MOVPE-grown Ga1â^'Mn As semimagnetic semiconductor layers. Thin Solid Films, 2000, 364, 209-212.	1.8	34
75	Magnetic-field tuning of the alloy-induced disorder in quaternary semimagnetic (Zn, Cd, Mn)Se quantum well structures. Thin Solid Films, 2000, 380, 215-217.	1.8	6
76	Luminescence, energy transfer and anti-Stokes PL in wide band-gap semimagnetic nanostructures. Journal of Luminescence, 2000, 87-89, 344-346.	3.1	16
77	From N isoelectronic impurities to N-induced bands in the GaNxAs1â^x alloy. Applied Physics Letters, 2000, 76, 3439-3441.	3.3	180
78	Tunneling and energy transfer in ZnSe-based semimagnetic double quantum wells. Physical Review B, 1998, 58, 1162-1165.	3.2	20
79	Photoluminescence and photoluminescence excitation studies of lateral size effects inZn1â^'xMnxSe/ZnSequantum disk samples of different radii. Physical Review B, 1998, 57, 7114-7118.	3.2	14
80	Optical Properties of (Zn, Mn) and (Cd, Mn) Chalcogenide Mixed Crystals and Superlattices. Physica Status Solidi (B): Basic Research, 1988, 146, 11-62.	1.5	263
81	Nonâ€Exponential ZnS:Mn Luminescence Decay Due to Energy Transfer. Physica Status Solidi (B): Basic Research, 1984, 126, K159.	1.5	33