
Davidâ€% Lowry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6310957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One hundred years into the study of ecotypes, new advances are being made through large-scale field experiments in perennial plant systems. Current Opinion in Plant Biology, 2022, 66, 102152.	7.1	14
2	Frequency-Dependent Hybridization Contributes to Habitat Segregation in Monkeyflowers. American Naturalist, 2022, 199, 743-757.	2.1	3
3	A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118879119.	7.1	5
4	The strength of reproductive isolating barriers in seed plants: Insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Evolution; International Journal of Organic Evolution, 2022, 76, 2228-2243.	2.3	23
5	The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). Theoretical and Applied Genetics, 2022, 135, 2577-2592.	3.6	2
6	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
7	Inbreeding depression contributes to the maintenance of habitat segregation between closely related monkeyflower species. Evolution; International Journal of Organic Evolution, 2021, 75, 832-846.	2.3	6
8	QTL × environment interactions underlie ionome divergence in switchgrass . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
9	Contrasting anther glucoseâ€6â€phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell and Environment, 2021, 44, 2185-2199.	5.7	16
10	Geographic patterns of genomic diversity and structure in the C4 grass <i>Panicum hallii</i> across its natural distribution. AoB PLANTS, 2021, 13, plab002.	2.3	18
11	Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (<i>Panicum virgatum</i>). New Phytologist, 2020, 227, 1696-1708.	7.3	19
12	Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower (Mimulus guttatus). American Journal of Botany, 2020, 107, 298-307.	1.7	17
13	Climatic impact, future biomass production, and local adaptation of four switchgrass cultivars. GCB Bioenergy, 2019, 11, 956-970.	5.6	9
14	The case for the continued use of the genus name <i>Mimulus</i> for all monkeyflowers. Taxon, 2019, 68, 617-623.	0.7	51
15	QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12933-12941.	7.1	75
16	Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics, 2019, 20, 312.	2.8	55
17	Mechanisms of a locally adaptive shift in allocation among growth, reproduction, and herbivore resistance in <i>Mimulus guttatus</i> *. Evolution; International Journal of Organic Evolution, 2019, 73, 1168-1181.	2.3	36
18	A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. Annual Review of Plant Biology, 2019, 70, 559-583.	18.7	95

#	Article	IF	CITATIONS
19	The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Communications, 2018, 9, 5213.	12.8	101
20	Population genomics and climate adaptation of a C4 perennial grass, Panicum hallii (Poaceae). BMC Genomics, 2018, 19, 792.	2.8	9
21	Gene regulatory divergence between locally adapted ecotypes in their native habitats. Molecular Ecology, 2018, 27, 4174-4188.	3.9	46
22	Genetic Analysis of Flooding Tolerance in an Andean Diversity Panel of Dry Bean (Phaseolus vulgaris) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
23	Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods in Ecology and Evolution, 2017, 8, 738-749.	5.2	79
24	Responsible <scp>RAD</scp> : Striving for best practices in population genomic studies of adaptation. Molecular Ecology Resources, 2017, 17, 366-369.	4.8	58
25	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	4.8	322
26	Pooled ecotype sequencing reveals candidate genetic mechanisms for adaptive differentiation and reproductive isolation. Molecular Ecology, 2017, 26, 163-177.	3.9	59
27	Promises and challenges of eco-physiological genomics in the field: tests of drought responses in switchgrass. Plant Physiology, 2016, 172, pp.00545.2016.	4.8	46
28	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	2.1	663
29	Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2016, 17, 142.	4.8	15
30	The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (<i>Panicum virgatum)</i> . G3: Genes, Genomes, Genetics, 2016, 6, 3561-3570.	1.8	55
31	Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses. Molecular Ecology, 2016, 25, 911-928.	3.9	41
32	QTL and Drought Effects on Leaf Physiology in Lowland Panicum virgatum. Bioenergy Research, 2016, 9, 1241-1259.	3.9	12
33	Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C ₄ grass. Genome Research, 2016, 26, 510-518.	5.5	52
34	Genomic studies on the nature of species: adaptation and speciation in <i>Mimulus</i> . Molecular Ecology, 2015, 24, 2601-2609.	3.9	32
35	QTLs for Biomass and Developmental Traits in Switchgrass (Panicum virgatum). Bioenergy Research, 2015, 8, 1856-1867.	3.9	30
36	Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 969-983.	6.6	52

David B Lowry

#	Article	IF	CITATIONS
37	The genetics of divergence and reproductive isolation between ecotypes of <i>Panicum hallii</i> . New Phytologist, 2015, 205, 402-414.	7.3	65
38	Adaptations between Ecotypes and along Environmental Gradients in <i>Panicum virgatum</i> . American Naturalist, 2014, 183, 682-692.	2.1	99
39	Divergent population structure and climate associations of a chromosomal inversion polymorphism across the <i><scp>M</scp>imulus guttatus</i> species complex. Molecular Ecology, 2014, 23, 2844-2860.	3.9	60
40	Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana. Molecular Biology and Evolution, 2014, 31, 2283-2296.	8.9	125
41	Genotypic variation in traits linked to climate and aboveground productivity in a widespread C ₄ grass: evidence for a functional trait syndrome. New Phytologist, 2013, 199, 966-980.	7.3	69
42	Expression Quantitative Trait Locus Mapping across Water Availability Environments Reveals Contrasting Associations with Genomic Features in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 3266-3279.	6.6	73
43	Indirect Evolution of Hybrid Lethality Due to Linkage with Selected Locus in Mimulus guttatus. PLoS Biology, 2013, 11, e1001497.	5.6	110
44	A population genetic transect of <i>Panicum hallii</i> (Poaceae). American Journal of Botany, 2013, 100, 592-601.	1.7	27
45	Microsatellite markers for the native Texas perennial grass, Panicum hallii (Poaceae). American Journal of Botany, 2012, 99, e114-6.	1.7	9
46	Five anthocyanin polymorphisms are associated with an <i>R2R3â€MYB</i> cluster in <i>Mimulus guttatus</i> (Phrymaceae). American Journal of Botany, 2012, 99, 82-91.	1.7	37
47	Local adaptation in The model plant. New Phytologist, 2012, 194, 888-890.	7.3	19
48	Ecotypes and the controversy over stages in the formation of new species. Biological Journal of the Linnean Society, 2012, 106, 241-257.	1.6	169
49	Mapping of Ionomic Traits in Mimulus guttatus Reveals Mo and Cd QTLs That Colocalize with MOT1 Homologues. PLoS ONE, 2012, 7, e30730.	2.5	18
50	Natural variation for drought-response traits in the Mimulus guttatus species complex. Oecologia, 2010, 162, 23-33.	2.0	103
51	Landscape evolutionary genomics. Biology Letters, 2010, 6, 502-504.	2.3	38
52	A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation. PLoS Biology, 2010, 8, e1000500.	5.6	509
53	Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland <i>Mimulus guttatus</i> . New Phytologist, 2009, 183, 776-788.	7.3	154
54	ECOLOGICAL REPRODUCTIVE ISOLATION OF COAST AND INLAND RACES OF <i>MIMULUS GUTTATUS </i> . Evolution; International Journal of Organic Evolution, 2008, 62, 2196-2214.	2.3	253

#	Article	IF	CITATIONS
55	The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3009-3021.	4.0	423