Jean D Beggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6309787/publications.pdf

Version: 2024-02-01

		53794	5	3230	
104	7,646	45		85	
papers	citations	h-index		g-index	
109	109	109		4753	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Transformation of yeast by a replicating hybrid plasmid. Nature, 1978, 275, 104-109.	27.8	1,425
2	Yeast Sm-like proteins function in mRNA decapping and decay. Nature, 2000, 404, 515-518.	27.8	384
3	The construction in vitro of transducing derivatives of phage lambda. Molecular Genetics and Genomics, 1976, 146, 199-207.	2.4	321
4	Prp8 protein: At the heart of the spliceosome. Rna, 2005, 11, 533-557.	3.5	298
5	Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10010-10015.	7.1	270
6	Splicing-Dependent RNA Polymerase Pausing in Yeast. Molecular Cell, 2010, 40, 582-593.	9.7	225
7	Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO Journal, 1999, 18, 4321-4331.	7.8	217
8	Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell, 1987, 51, 1019-1026.	28.9	208
9	A role for Q/N-rich aggregation-prone regions in P-body localization. Journal of Cell Science, 2008, 121, 2463-2472.	2.0	191
10	Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins. Yeast, 2000, 1, 95-110.	1.7	169
11	Functional Contacts With a Range of Splicing Proteins Suggest a Central Role for Brr2p in the Dynamic Control of the Order of Events in Spliceosomes of <i>Saccharomyces cerevisiae</i> Genetics, 2001, 157, 1451-1467.	2.9	134
12	A suppressor of a yeast splicing mutation (prp8-l) encodes a putative ATP-dependent RNA helicase. Nature, 1991, 349, 715-717.	27.8	130
13	Vac14 Controls PtdIns(3,5) P 2 Synthesis and Fab1-Dependent Protein Trafficking to the Multivesicular Body. Current Biology, 2002, 12, 885-893.	3.9	125
14	Abnormal expression of chromosomal rabbit \hat{l}^2 -globin gene in Saccharomyces cerevisiae. Nature, 1980, 283, 835-840.	27.8	124
15	Conservation between yeast and man of a protein associated with U5 small nuclear ribonucleoprotein. Nature, 1989, 342, 819-821.	27.8	116
16	Genetic and Physical Interactions Between Factors Involved in Both Cell Cycle Progression and Pre-mRNA Splicing in <i>Saccharomyces cerevisiae</i> . Genetics, 2000, 156, 1503-1517.	2.9	108
17	Lsm proteins and RNA processing 1. Biochemical Society Transactions, 2005, 33, 433-438.	3.4	102
18	Characterization of U6 snRNA–protein interactions. Rna, 1999, 5, 1470-1481.	3.5	97

#	Article	IF	CITATIONS
19	RNA helicases in splicing. RNA Biology, 2013, 10, 83-95.	3.1	97
20	Interaction between a G-Patch Protein and a Spliceosomal DEXD/H-Box ATPase That Is Critical for Splicing. Molecular and Cellular Biology, 2004, 24, 10101-10110.	2.3	96
21	prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nature Structural and Molecular Biology, 2007, 14, 1077-1083.	8.2	93
22	The product of the PRP4 gene of S. cerevisiae shows homology to \hat{l}^2 subunits of G proteins. Cell, 1989, 58, 811-812.	28.9	91
23	Interactions of PRP2 protein with pre-mRNA splicing complexes inSaccharomyces cerevisiae. Nucleic Acids Research, 1990, 18, 6559-6564.	14.5	90
24	Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Research, 2018, 28, 203-213.	5.5	88
25	Dhr1p, a Putative DEAH-Box RNA Helicase, Is Associated with the Box C+D snoRNP U3. Molecular and Cellular Biology, 2000, 20, 7238-7246.	2.3	87
26	A Splicing-Dependent Transcriptional Checkpoint Associated with Prespliceosome Formation. Molecular Cell, 2014, 53, 779-790.	9.7	87
27	Structure, function and regulation of spliceosomal RNA helicases. Current Opinion in Cell Biology, 2012, 24, 431-438.	5.4	81
28	Lsm Proteins Are Required for Normal Processing and Stability of Ribosomal RNAs. Journal of Biological Chemistry, 2003, 278, 2147-2156.	3.4	71
29	RNA Splicing: U2 fulfils a commitment. Current Biology, 1994, 4, 264-267.	3.9	68
30	Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes and Development, 2012, 26, 2408-2421.	5.9	68
31	Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Research, 1995, 23, 320-326.	14.5	66
32	Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biology, 2015, 16, 282.	8.8	64
33	Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. Rna, 1998, 4, 1674-1686.	3.5	63
34	Extraordinary sequence conservation of the PRP8 splicing factor. Yeast, 1995, 11, 337-342.	1.7	62
35	Lsm Proteins Are Required for Normal Processing of Pre-tRNAs and Their Efficient Association with La-Homologous Protein Lhp1p. Molecular and Cellular Biology, 2002, 22, 5248-5256.	2.3	61
36	Affinity purification of spliceosomes reveals that the precursor RNA processing protein PRP8, a protein in the U5 small nuclear ribonucleoprotein particle, is a component of yeast spliceosomes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2216-2219.	7.1	59

#	Article	IF	Citations
37	A mammalian protein of 220 kDa binds pre-mRNAs in the spliceosome: a potential homologue of the yeast PRP8 protein Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3082-3086.	7.1	58
38	Nuclear Pre-mRNA Decapping and 5′ Degradation in Yeast Require the Lsm2-8p Complex. Molecular and Cellular Biology, 2004, 24, 9646-9657.	2.3	58
39	A suppressor of yeastspp81/ded1mutations encodes a very similar putative ATP-dependent RNA helicase. Molecular Microbiology, 1991, 5, 805-812.	2.5	57
40	Yeast Ntr1/Spp382 Mediates Prp43 Function in Postspliceosomes. Molecular and Cellular Biology, 2006, 26, 6016-6023.	2.3	56
41	Functional analyses of interacting factors involved in both pre-mRNA splicing and cell cycle progression in Saccharomyces cerevisiae. Rna, 2000, 6, 1565-1572.	3.5	53
42	Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. Rna, 2003, 9, 138-150.	3.5	53
43	Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. Rna, 2009, 15, 2161-2173.	3.5	51
44	RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and $3\hat{a}\in^2$ -end processing in <i>Saccharomyces cerevisiae</i>	3.5	48
45	A map of the restriction targets in yeast 2 micron plasmid DNA cloned on bacteriophage lambda. Molecular Genetics and Genomics, 1976, 148, 287-294.	2.4	47
46	Lsm Proteins Promote Regeneration of Pre-mRNA Splicing Activity. Current Biology, 2004, 14, 1487-1491.	3.9	47
47	The yeast PRP8 protein intersacts directly with pre-mRNA. Nucleic Acids Research, 1991, 19, 5483-5489.	14.5	46
48	Cross-talk in transcription, splicing and chromatin: who makes the first call?. Biochemical Society Transactions, 2010, 38, 1251-1256.	3.4	42
49	Extensive Genetic Interactions Between PRP8 and PRP17/CDC40, Two Yeast Genes Involved in Pre-mRNA Splicing and Cell Cycle Progression. Genetics, 2000, 154, 61-71.	2.9	42
50	Protein–RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. Rna, 1998, 4, 1239-1250.	3.5	40
51	A complex pathway for 3' processing of the yeast U3 snoRNA. Nucleic Acids Research, 2003, 31, 6788-6797.	14.5	40
52	Identification and functional analysis of hPRP17, the human homologue of the PRP17/CDC40 yeast gene involved in splicing and cell cycle control. Rna, 1998, 4, 1304-1312.	3.5	39
53	The identification and characterization of a novel splicing protein, Isy1p, of Saccharomyces cerevisiae. Rna, 1999, 5, 360-368.	3.5	39
54	Extremely fast and incredibly close: cotranscriptional splicing in budding yeast. Rna, 2017, 23, 601-610.	3.5	37

#	Article	IF	Citations
55	Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins. Yeast, 2000, 1, 95-110.	1.7	36
56	Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes and Development, 2011, 25, 1601-1612.	5.9	35
57	Evolutionary conservation of the spliceosaomal protein, U2 B― Nucleic Acids Research, 1991, 19, 5213-5217.	14.5	34
58	A Nuclear Export Block Triggers the Decay of Newly Synthesized Polyadenylated RNA. Cell Reports, 2018, 24, 2457-2467.e7.	6.4	34
59	Polypeptide components of Drosophilas mall nuclear ribonucle oprotein particles. Nucleic Acids Research, 1991, 19, 5877-5882.	14.5	31
60	Prp8p dissection reveals domain structure and protein interaction sites. Rna, 2005, 12, 198-205.	3.5	31
61	Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Human Mutation, 2010, 31, E1361-E1376.	2.5	31
62	The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA. Nucleic Acids Research, 2007, 35, 923-929.	14.5	30
63	Splicing goes global. Trends in Genetics, 2003, 19, 295-298.	6.7	29
64	Brr2p RNA helicase with a split personality: insights into structure and function. Biochemical Society Transactions, 2010, 38, 1105-1109.	3.4	27
65	A fast and tuneable auxinâ€inducible degron for depletion of target proteins in budding yeast. Yeast, 2019, 36, 75-81.	1.7	27
66	Modelling Reveals Kinetic Advantages of Co-Transcriptional Splicing. PLoS Computational Biology, 2011, 7, e1002215.	3.2	26
67	Structural basis for dual roles of Aar2p in U5 snRNP assembly. Genes and Development, 2013, 27, 525-540.	5.9	26
68	The expression of cytochrome P450IIB1 in Saccharomyces cerevisia results in an increased mutation frequency when exposed to cyclophosphamide. Carcinogenesis, 1989, 10, 2139-2143.	2.8	25
69	Requirements for nuclear localization of the Lsm2-8p complex and competition between nuclear and cytoplasmic Lsm complexes. Journal of Cell Science, 2007, 120, 4310-4320.	2.0	25
70	Kinetic analysis of pre-ribosome structure in vivo. Rna, 2012, 18, 2187-2200.	3.5	22
71	Identification of theRNA2 protein ofSaccharomyces cerevisiae. Yeast, 1986, 2, 59-67.	1.7	21
72	The role of PRP8 protein in nuclear pre-mRNA splicing in yeast. Journal of Cell Science, 1995, 1995, 101-105.	2.0	21

#	Article	IF	CITATIONS
73	Production of cytochrome P450 reductase yeast-rat hybrid proteins in Saccharomyces cerevisiae. Gene, 1992, 110, 33-39.	2.2	18
74	Cwc21p promotes the second step conformation of the spliceosome and modulates $3\hat{a} \in 2$ splice site selection. Nucleic Acids Research, 2015, 43, 3309-3317.	14.5	17
75	RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. ELife, 2017, 6, .	6.0	16
76	Yeast protein splicing factors involved in nuclear pre-mRNA splicing. Molecular Biology Reports, 1993, 18, 99-103.	2.3	14
77	Cloning and characterisation of the gene encoding the ribosomal protien S5 (also known as rp14, S2,) Tj ETQq1 1	9.78431	1 rgBT /Over
78	Interaction of yeast eIF4G with spliceosome components: Implications in pre-mRNA processing events. RNA Biology, 2009, 6, 563-574.	3.1	14
79	Heterologous expression of drug-metabolizing enzymes in cellular and whole animal models. Toxicology, 1993, 82, 3-20.	4.2	13
80	Detection of a plant protein analogous to the yeast spliceosomal protein, PRP8. FEBS Letters, 1993, 318, 4-6.	2.8	13
81	Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. Rna, 2009, 15, 1292-1304.	3.5	13
82	Brr2p carboxy-terminal Sec63 domain modulates Prp16 splicing RNA helicase. Nucleic Acids Research, 2014, 42, 13897-13910.	14.5	13
83	Spt5 modulates cotranscriptional spliceosome assembly in <i>Saccharomyces cerevisiae</i> . Rna, 2019, 25, 1298-1310.	3.5	13
84	Analysis of Lsm1p and Lsm8p domains in the cellular localization of Lsm complexes in budding yeast. FEBS Journal, 2009, 276, 3602-3617.	4.7	10
85	Branched poly-labelled oligonucleotides: enhanced specificity of fork-shaped biotinylated oligoribonucleotides for antisense affinity selection. Nucleic Acids Research, 1993, 21, 4651-4652.	14.5	9
86	Yeast Splicing Factors and Genetic Strategies for Their Analysis. Molecular Biology Intelligence Unit, 1995, , 79-95.	0.2	9
87	Agrobacterium tumefaciens T-DNA in the yeast Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1984, 195, 209-214.	2.4	8
88	Crosstalk between RNA metabolic pathways: an RNOMICS approach. Nature Reviews Molecular Cell Biology, 2005, 6, 423-429.	37.0	8
89	The genetics of nuclear pre-mRNA splicing: a complex story. Antonie Van Leeuwenhoek, 1992, 62, 35-46.	1.7	7
90	Extremely Rapid and Specific Metabolic Labelling of RNA In Vivo with 4-Thiouracil (Ers4tU). Journal of Visualized Experiments, 2019, , .	0.3	6

#	Article	IF	Citations
91	A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation. Journal of the Royal Society Interface, 2013, 10, 20130438.	3.4	5
92	Mandelate Dehydrogenase with Altered Stereospecificity in Mutant Strains of <i>Acinetobacter calcoaceticus</i> N.C.I.B. 8250. Biochemical Society Transactions, 1976, 4, 614-615.	3.4	4
93	Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. RNA Biology, 2019, 16, 1775-1784.	3.1	4
94	Repression of the Enzymes Converting Benzyl Alcohol into Benzoate in Acinetobacter calcoaceticus N.C.I.B. 8250. Biochemical Society Transactions, 1974, 2, 924-925.	3.4	3
95	Revisiting the window of opportunity for cotranscriptional splicing in budding yeast. Rna, 2020, 26, 1081-1085.	3.5	3
96	Processivity and Coupling in Messenger RNA Transcription. PLoS ONE, 2010, 5, e8845.	2.5	3
97	The genetics of nuclear pre-mRNA splicing: a complex story. , 1992, , 35-46.		2
98	SYNTHESIS OF RABBIT \hat{i}^2 -GLOBIN-SPECIFIC RNA IN MOUSE L CELLS AND YEAST TRANSFORMED WITH CLONED RABBIT CHROMOSOMAL \hat{i}^2 -GLOBIN DNA. , 1979, , 477-498.		2
99	Protein interactions in nuclear pre-mRNA splicing in Saccharomyces cerevisiae. Molecular Biology Reports, 1990, 14, 141-142.	2.3	1
100	Tuning Degradation to Achieve Specific and Efficient Protein Depletion. Journal of Visualized Experiments, 2019, , .	0.3	1
101	Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. RNA Biology, 2021, 18, 782-793.	3.1	1
102	Identification of a snRNP protein in Saccharomyces cerevisiae. Molecular Biology Reports, 1987, 12, 209-210.	2.3	0
103	Noreen Elizabeth Murray CBE. 26 February 1935 â€" 12 May 2011. Biographical Memoirs of Fellows of the Royal Society, 2014, 60, 349-374.	0.1	0
104	Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. RNA Biology, 2019, 16, 185-195.	3.1	0