Mitchell Kronenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/630960/publications.pdf

Version: 2024-02-01

290 papers

35,403 citations

93 h-index 180 g-index

304 all docs

304 docs citations

304 times ranked 25982 citing authors

#	Article	IF	Citations
1	Stimulation of a subset of natural killer TÂcells by CD103+ DC is required for GM-CSF and protection from pneumococcal infection. Cell Reports, 2022, 38, 110209.	2.9	5
2	Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Reports, 2022, 38, 110553.	2.9	9
3	Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature, 2022, 605, 741-746.	13.7	36
4	Hypoxia induces adrenomedullin from lung epithelia, stimulating ILC2 inflammation and immunity. Journal of Experimental Medicine, 2022, 219, .	4.2	8
5	Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nature Genetics, 2021, 53, 110-119.	9.4	62
6	Metabolic activation and colitis pathogenesis is prevented by lymphotoxin \hat{l}^2 receptor expression in neutrophils. Mucosal Immunology, 2021, 14, 679-690.	2.7	9
7	Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nature Communications, 2021, 12, 1446.	5. 8	21
8	Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO Journal, 2021, 40, e107901.	3.5	3
9	Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. Journal of Experimental Medicine, 2021, 218, .	4.2	29
10	HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. Journal of Experimental Medicine, 2021, 218, .	4.2	15
11	Thymus-Derived CD4+CD8+ Cells Reside in Mediastinal Adipose Tissue and the Aortic Arch. Journal of Immunology, 2021, 207, ji2100208.	0.4	1
12	The Role of Invariant Natural Killer T Cells in Autoimmune Diseases. , 2020, , 117-153.		1
13	Howard Grey (1932–2019). Immunity, 2020, 52, 422-423.	6.6	0
14	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
15	The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunology, 2020, 13, 399-412.	2.7	35
16	Metabolic Triggers of Invariant Natural Killer T-Cell Activation during Sterile Autoinflammatory Disease. Critical Reviews in Immunology, 2020, 40, 367-378.	1.0	3
17	Bacterial Infection Allows for Functional Examination of Adoptively Transferred Mouse Innate Lymphoid Cell Subsets. Methods in Molecular Biology, 2020, 2121, 129-140.	0.4	1
18	Engineered Stem Cells Provide Cancer-Killing iNKT Cells. Cell Stem Cell, 2019, 25, 454-455.	5. 2	1

#	Article	IF	Citations
19	Editorial introduction. Molecular Immunology, 2019, 114, 269.	1.0	O
20	The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity, 2019, 51, 310-323.e7.	6.6	74
21	The Protein Phosphatase Shp1 Regulates Invariant NKT Cell Effector Differentiation Independently of TCR and Slam Signaling. Journal of Immunology, 2019, 202, 2276-2286.	0.4	15
22	Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity. Journal of Clinical Investigation, 2019, 129, 1193-1210.	3.9	51
23	Development of Asthma in Inner-City Children: Possible Roles of MAIT Cells and Variation in the Home Environment. Journal of Immunology, 2018, 200, 1995-2003.	0.4	38
24	Riboflavin Metabolism Variation among Clinical Isolates of <i>Streptococcus pneumoniae</i> Results in Differential Activation of Mucosal-associated Invariant T Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 767-776.	1.4	42
25	LIGHT–HVEM signaling in keratinocytes controls development of dermatitis. Journal of Experimental Medicine, 2018, 215, 415-422.	4.2	32
26	Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nature Communications, 2018, 9, 1095.	5.8	129
27	The Tumor Necrosis Factor Superfamily Members TNFSF14 (LIGHT), Lymphotoxin \hat{l}^2 and Lymphotoxin \hat{l}^2 Receptor Interact to Regulate Intestinal Inflammation. Frontiers in Immunology, 2018, 9, 2585.	2.2	30
28	Kimishige Ishizaka, M.D., Ph.D. (AAI '58), December 3, 1925 to July 6, 2018. Journal of Immunology, 2018, 20 3143-3144.	1,0.4	0
29	Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell, 2018, 175, 1701-1715.e16.	13.5	588
30	Herpes Simplex Virus 1 Latency and the Kinetics of Reactivation Are Regulated by a Complex Network of Interactions between the Herpesvirus Entry Mediator, Its Ligands (gD, BTLA, LIGHT, and CD160), and the Latency-Associated Transcript. Journal of Virology, 2018, 92, .	1.5	21
31	Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nature Communications, 2018, 9, 4279.	5.8	11
32	Cancer immunity thwarted by the microbiome. Science, 2018, 360, 858-859.	6.0	16
33	Tissue-specific functions of invariant natural killer T cells. Nature Reviews Immunology, 2018, 18, 559-574.	10.6	253
34	Role of MAIT cells in pulmonary bacterial infection. Molecular Immunology, 2018, 101, 155-159.	1.0	26
35	A Sensitive and Integrated Approach to Profile Messenger RNA from Samples with Low Cell Numbers. Methods in Molecular Biology, 2018, 1799, 275-302.	0.4	26
36	Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Frontiers in Immunology, 2018, 9, 391.	2.2	24

#	Article	IF	Citations
37	Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70. Nature Communications, 2018, 9, 2627.	5.8	55
38	Response to Comment on "Development of Asthma in Inner-City Children: Possible Roles of MAIT Cells and Variation in the Home Environment― Journal of Immunology, 2018, 200, 3317-3318.	0.4	3
39	LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection. Cell Host and Microbe, 2018, 24, 249-260.e4.	5.1	42
40	Neutrophils form elongated shearâ€derived particles (SDP) via shedding tethers and slings. FASEB Journal, 2018, 32, 574.6.	0.2	0
41	ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Scientific Reports, 2017, 7, 40273.	1.6	27
42	Improved Detection of Cytokines Produced by Invariant NKT Cells. Scientific Reports, 2017, 7, 16607.	1.6	16
43	MAITs onstage in mice and men with three acts for development. Immunology and Cell Biology, 2017, 95, 3-4.	1.0	1
44	Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy., 2017, 58, 282.		19
45	When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	15
46	A TNFRSF14-FcÉ>RI-mast cell pathway contributes to development of multiple features of asthma pathology in mice. Nature Communications, 2016, 7, 13696.	5.8	36
47	Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nature Immunology, 2016, 17, 728-739.	7.0	254
48	CD1d-restricted peripheral T cell lymphoma in mice and humans. Journal of Experimental Medicine, 2016, 213, 841-857.	4.2	19
49	Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics, 2016, 68, 639-648.	1.2	32
50	Phospholipid signals of microbial infection for the human immune system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 251-253.	3.3	4
51	The transcription factor NR4A3 controls CD103+ dendritic cell migration. Journal of Clinical Investigation, 2016, 126, 4603-4615.	3.9	30
52	Antigen specificity of invariant natural killer T-cells. Biomedical Journal, 2015, 38, 470-483.	1.4	22
53	<scp>OMIP</scp> â€030: Characterization of human <scp>T</scp> cell subsets via surface markers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 1067-1069.	1.1	49
54	NKT10 cells: a novel <i>i</i> iNKT cell subset. Oncotarget, 2015, 6, 26552-26553.	0.8	16

#	Article	IF	CITATIONS
55	Activation and Function of iNKT and MAIT Cells. Advances in Immunology, 2015, 127, 145-201.	1.1	90
56	The Alpha and Omega of Galactosylceramides in T Cell Immune Function. Journal of Biological Chemistry, 2015, 290, 15365-15370.	1.6	18
57	A new mouse strain for the analysis of invariant NKT cell function. Nature Immunology, 2015, 16, 799-800.	7.0	57
58	Invariant NKT Cells Require Autophagy To Coordinate Proliferation and Survival Signals during Differentiation. Journal of Immunology, 2015, 194, 5872-5884.	0.4	64
59	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN- \hat{I}^3 Production. Journal of Immunology, 2015, 195, 924-933.	0.4	28
60	Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation. Journal of Biological Chemistry, 2015, 290, 17206-17217.	1.6	15
61	IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nature Communications, 2015, 6, 7055.	5.8	103
62	Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation. Journal of Immunology, 2015, 195, 3838-3848.	0.4	21
63	Synthesis of a 2ꞌꞌ-Deoxy-β-GalCer. Molecules, 2014, 19, 10090-10102.	1.7	7
64	Transcriptional Control of the Development and Function of $\hat{Vl}\pm 14i$ NKT Cells. Current Topics in Microbiology and Immunology, 2014, 381, 51-81.	0.7	25
65	Invariant natural killer T cells are depleted in renal impairment and recover after kidney transplantation. Nephrology Dialysis Transplantation, 2014, 29, 1020-1028.	0.4	7
66	Therapeutic Blockade of LIGHT Interaction With Herpesvirus Entry Mediator and Lymphotoxin \hat{l}^2 Receptor Attenuates In Vivo Cytotoxic Allogeneic Responses. Transplantation, 2014, 98, 1165-1174.	0.5	6
67	HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System. Immune Network, 2014, 14, 67.	1.6	22
68	Oiling the wheels of autoimmunity. Nature, 2014, 506, 42-43.	13.7	7
69	Protein kinase C-η controls CTLA-4–mediated regulatory T cell function. Nature Immunology, 2014, 15, 465-472.	7.0	118
70	Distinct Requirements for Activation of NKT and NK Cells during Viral Infection. Journal of Immunology, 2014, 192, 3676-3685.	0.4	54
71	The Role of Invariant Natural Killer T Cells in Autoimmune Diseases. , 2014, , 103-129.		3
72	When Less Is More: T Lymphocyte Populations with Restricted Antigen Receptor Diversity. Journal of Immunology, 2014, 193, 975-976.	0.4	15

#	Article	IF	Citations
73	Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nature Communications, 2014, 5, 4540.	5.8	39
74	The Identification of the Endogenous Ligands of Natural Killer T Cells Reveals the Presence of Mammalian α-Linked Glycosylceramides. Immunity, 2014, 41, 543-554.	6.6	207
7 5	$\hat{l}\pm\hat{l}^2T$ Cell Receptors Expressed by CD4â^'CD8 $\hat{l}\pm\hat{l}^2\hat{a}$ ' Intraepithelial T Cells Drive Their Fate into a Unique Lineage with Unusual MHC Reactivities. Immunity, 2014, 41, 207-218.	6.6	68
76	The Tumor Necrosis Factor Family Member TNFSF14 (LIGHT) Is Required for Resolution of Intestinal Inflammation in Mice. Gastroenterology, 2014, 146, 1752-1762.e4.	0.6	52
77	Antigen-Dependent versus -Independent Activation of Invariant NKT Cells during Infection. Journal of Immunology, 2014, 192, 5490-5498.	0.4	74
78	IL-10–producing NKT10 cells are a distinct regulatory invariant NKT cell subset. Journal of Clinical Investigation, 2014, 124, 3725-3740.	3.9	207
79	Identification of Previously Unrecognized CD1d-Restricted Peripheral T Cell Lymphomas (PTCLs) in Mouse and Human Reveals Blocking Anti-CD1d Monoclonal Antibodies As a New Therapeutic Possibility in PTCLs. Blood, 2014, 124, 4485-4485.	0.6	0
80	The role of invariant natural killer T cells in microbial immunity. Journal of Infection and Chemotherapy, 2013, 19, 560-570.	0.8	48
81	Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class Il–restricted cytotoxic T lymphocytes. Nature Immunology, 2013, 14, 281-289.	7.0	306
82	A 'GEM' of a cell. Nature Immunology, 2013, 14, 694-695.	7.0	5
83	Production of α-Galactosylceramide by a Prominent Member of the Human Gut Microbiota. PLoS Biology, 2013, 11, e1001610.	2.6	200
84	Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7826-7831.	3.3	101
85	Exosome-like Nanoparticles from Intestinal Mucosal Cells Carry Prostaglandin E2 and Suppress Activation of Liver NKT Cells. Journal of Immunology, 2013, 190, 3579-3589.	0.4	82
86	HVEM. Gut Microbes, 2013, 4, 146-151.	4.3	21
87	A Novel Role for IL-27 in Mediating the Survival of Activated Mouse CD4 T Lymphocytes. Journal of Immunology, 2013, 190, 1510-1518.	0.4	60
88	Intestinal mucus-derived nanoparticle-mediated activation of Wnt \hat{l}^2 -catenin signaling plays a role in induction of liver natural killer T cell anergy in mice. Hepatology, 2013, 57, 1250-1261.	3.6	24
89	Helicobacter pylori Cholesteryl \hat{l} ±-Glucosides Contribute to Its Pathogenicity and Immune Response by Natural Killer T Cells. PLoS ONE, 2013, 8, e78191.	1.1	56
90	TSC1 regulates the balance between effector and regulatory T cells. Journal of Clinical Investigation, 2013, 123, 5165-5178.	3.9	120

#	Article	IF	CITATIONS
91	BTLA Interaction with HVEM Expressed on CD8+ T Cells Promotes Survival and Memory Generation in Response to a Bacterial Infection. PLoS ONE, 2013, 8, e77992.	1.1	62
92	Abstract 44: Interleukin-27 Signaling is a Critical Regulator of Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
93	Neutrophilic Granulocytes Modulate Invariant NKT Cell Function in Mice and Humans. Journal of Immunology, 2012, 188, 3000-3008.	0.4	38
94	ATP-Binding Cassette Transporter G1 Intrinsically Regulates Invariant NKT Cell Development. Journal of Immunology, 2012, 189, 5129-5138.	0.4	15
95	The transcription factor Th-POK negatively regulates Th17 differentiation in $\hat{\text{Vl}}\pm14\text{i}$ NKT cells. Blood, 2012, 120, 4524-4532.	0.6	52
96	Interleukin-27 Receptor Limits Atherosclerosis in <i>Ldlr</i> ^{â^'/â^'} Mice. Circulation Research, 2012, 111, 1274-1285.	2.0	53
97	Making memory at birth: understanding the differentiation of natural killer T cells. Current Opinion in Immunology, 2012, 24, 184-190.	2.4	41
98	Intestinal Microbes Affect Phenotypes and Functions of Invariant Natural Killer T Cells in Mice. Gastroenterology, 2012, 143, 418-428.	0.6	197
99	Interruption of CXCL13-CXCR5 Axis Increases Upper Genital Tract Pathology and Activation of NKT Cells following Chlamydial Genital Infection. PLoS ONE, 2012, 7, e47487.	1.1	27
100	HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature, 2012, 488, 222-225.	13.7	121
101	Interplay between carbohydrate and lipid in recognition of glycolipid antigens by natural killer T cells. Annals of the New York Academy of Sciences, 2012, 1253, 68-79.	1.8	31
102	Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nature Immunology, 2011, 12, 966-974.	7.0	295
103	Glycolipids that Elicit IFN-Î ³ -Biased Responses from Natural Killer T Cells. Chemistry and Biology, 2011, 18, 1620-1630.	6.2	37
104	Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection. Journal of Molecular Medicine, 2011, 89, 997-1013.	1.7	38
105	Hepatic Stellate Cells Function as Regulatory Bystanders. Journal of Immunology, 2011, 186, 5549-5555.	0.4	135
106	Diverse Endogenous Antigens for Mouse NKT Cells: Self-Antigens That Are Not Glycosphingolipids. Journal of Immunology, 2011, 186, 1348-1360.	0.4	54
107	Cooling the fires of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16493-16494.	3.3	5
108	Invariant NKT cells are required for airway inflammation induced by environmental antigens. Journal of Experimental Medicine, 2011, 208, 1151-1162.	4.2	97

#	Article	IF	CITATIONS
109	Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nature Immunology, 2011, 12, 1086-1095.	7.0	63
110	Unique Interplay between Sugar and Lipid in Determining the Antigenic Potency of Bacterial Antigens for NKT Cells. PLoS Biology, 2011, 9, e1001189.	2.6	43
111	A CD1d-Dependent Antagonist Inhibits the Activation of Invariant NKT Cells and Prevents Development of Allergen-Induced Airway Hyperreactivity. Journal of Immunology, 2010, 184, 2107-2115.	0.4	43
112	Co-receptor choice by $\hat{Vl}\pm 14$ i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. Journal of Experimental Medicine, 2010, 207, 1015-1029.	4.2	57
113	Loss of T Cell and B Cell Quiescence Precedes the Onset of Microbial Flora-Dependent Wasting Disease and Intestinal Inflammation in Gimap5-Deficient Mice. Journal of Immunology, 2010, 184, 3743-3754.	0.4	60
114	Antigen-Specific Cytotoxicity by Invariant NKT Cells In Vivo Is CD95/CD178-Dependent and Is Correlated with Antigenic Potency. Journal of Immunology, 2010, 185, 2721-2729.	0.4	123
115	Lipid binding orientation within CD1d affects recognition of <i>Borrelia burgorferi</i> NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1535-1540.	3.3	91
116	Mechanisms for Glycolipid Antigen-Driven Cytokine Polarization by $\hat{Vl}\pm 14 < i > i < /i > NKT Cells$. Journal of Immunology, 2010, 184, 141-153.	0.4	108
117	Commensal Microbiota and CD8+ T Cells Shape the Formation of Invariant NKT Cells. Journal of Immunology, 2010, 184, 1218-1226.	0.4	119
118	The $\hat{Vl}\pm 14$ invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. Journal of Experimental Medicine, 2010, 207, 2383-2393.	4.2	78
119	Regulation of inflammation, autoimmunity, and infection immunity by HVEM-BTLA signaling. Journal of Leukocyte Biology, 2010, 89, 517-523.	1.5	88
120	NKG2A Inhibits Invariant NKT Cell Activation in Hepatic Injury. Journal of Immunology, 2009, 182, 250-258.	0.4	39
121	Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19461-19466.	3.3	65
122	Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17847-17851.	3.3	65
123	Unconventional ligand activation of herpesvirus entry mediator signals cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6244-6249.	3.3	165
124	T Cell Intrinsic Heterodimeric Complexes between HVEM and BTLA Determine Receptivity to the Surrounding Microenvironment. Journal of Immunology, 2009, 183, 7286-7296.	0.4	121
125	Eli E. Sercarz (1934–2009). Immunity, 2009, 31, 845-846.	6.6	0
126	Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Seminars in Immunopathology, 2009, 31, 207-221.	2.8	36

#	Article	IF	CITATIONS
127	Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunology, 2009, 10, 1178-1184.	7.0	731
128	Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunological Reviews, 2009, 230, 188-200.	2.8	38
129	Innate-like recognition of microbes by invariant natural killer T cells. Current Opinion in Immunology, 2009, 21, 391-396.	2.4	67
130	Retinoic Acid Can Directly Promote TGF-Î ² -Mediated Foxp3+ Treg Cell Conversion of Naive T Cells. Immunity, 2009, 30, 471-472.	6.6	171
131	Synthesis and evaluation of $3\hat{a}\in 3$ - and $4\hat{a}\in 3$ -deoxy and -fluoro analogs of the immunostimulatory glycolipid, KRN7000. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4122-4125.	1.0	44
132	Natural killer T cells exacerbate liver injury in a transforming growth factor \hat{I}^2 receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology, 2008, 47, 571-580.	3.6	106
133	Natural Sphingomonas Glycolipids Vary Greatly in Their Ability to Activate Natural Killer T Cells. Chemistry and Biology, 2008, 15, 654-664.	6.2	61
134	Acid Test: Lipid Antigens Get into the Groove. Immunity, 2008, 28, 727-729.	6.6	4
135	Cutting Edge: The Mechanism of Invariant NKT Cell Responses to Viral Danger Signals. Journal of Immunology, 2008, 181, 4452-4456.	0.4	152
136	Cutting Edge: Activation by Innate Cytokines or Microbial Antigens Can Cause Arrest of Natural Killer T Cell Patrolling of Liver Sinusoids. Journal of Immunology, 2008, 180, 2024-2028.	0.4	73
137	Abrogation of Anti-Retinal Autoimmunity in IL-10 Transgenic Mice Due to Reduced T Cell Priming and Inhibition of Disease Effector Mechanisms. Journal of Immunology, 2008, 180, 5423-5429.	0.4	23
138	Spontaneous Colitis Occurrence in Transgenic Mice with Altered B7-Mediated Costimulation. Journal of Immunology, 2008, 181, 5278-5288.	0.4	12
139	Villous B Cells of the Small Intestine Are Specialized for Invariant NK T Cell Dependence. Journal of Immunology, 2008, 180, 4629-4638.	0.4	19
140	Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. American Journal of Physiology - Renal Physiology, 2008, 294, G1-G8.	1.6	50
141	NKT cells prevent chronic joint inflammation after infection with <i>Borrelia burgdorferi </i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19863-19868.	3.3	85
142	A crucial role for HVEM and BTLA in preventing intestinal inflammation. Journal of Experimental Medicine, 2008, 205, 1463-1476.	4.2	118
143	Activation of Invariant NKT Cells Ameliorates Experimental Ocular Autoimmunity by A Mechanism Involving Innate IFN- $\hat{1}^3$ Production and Dampening of the Adaptive Th1 and Th17 Responses. Journal of Immunology, 2008, 181, 4791-4797.	0.4	70
144	RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis, 2008, 29, 2035-2043.	1.3	267

#	Article	IF	CITATIONS
145	Innate cytokines and natural receptor agonist arrest natural killer T cell patrolling of liver sinusoids. FASEB Journal, 2008, 22, 1072.1.	0.2	O
146	Mouse $TCR\hat{1}\pm\hat{1}^2+CD8\hat{1}\pm\hat{1}\pm$ Intraepithelial Lymphocytes Express Genes That Down-Regulate Their Antigen Reactivity and Suppress Immune Responses. Journal of Immunology, 2007, 178, 4230-4239.	0.4	132
147	Invariant NKT Cells Amplify the Innate Immune Response to Lipopolysaccharide. Journal of Immunology, 2007, 178, 2706-2713.	0.4	244
148	Natural killer T cells: Know thyself. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5713-5714.	3.3	19
149	Paradoxical Effect of Reduced Costimulation in T Cell-Mediated Colitis. Journal of Immunology, 2007, 178, 5563-5570.	0.4	10
150	Reciprocal TH17 and Regulatory T Cell Differentiation Mediated by Retinoic Acid. Science, 2007, 317, 256-260.	6.0	1,778
151	On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Current Opinion in Immunology, 2007, 19, 186-193.	2.4	50
152	Thymic differentiation of TCRαβ+CD8αα+IELs. Immunological Reviews, 2007, 215, 178-188.	2.8	68
153	The unique role of natural killer T cells in the response to microorganisms. Nature Reviews Microbiology, 2007, 5, 405-417.	13.6	405
154	Frontline T cells: γδT cells and intraepithelial lymphocytes. Immunological Reviews, 2007, 215, 5-7.	2.8	20
155	CD1 mediated T cell recognition of glycolipids. Current Opinion in Structural Biology, 2007, 17, 521-529.	2.6	52
156	Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2782-2787.	3.3	206
157	CD4+ Invariant T-Cell–Receptor+ Natural Killer T Cells in Bronchial Asthma. New England Journal of Medicine, 2006, 354, 1117-1129.	13.9	388
158	Activation of Natural Killer T Cells by Glycolipids. Methods in Enzymology, 2006, 417, 185-201.	0.4	48
159	Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunology, 2006, 7, 978-986.	7.0	567
160	Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflammatory Bowel Diseases, 2006, 12, 389-394.	0.9	34
161	Synergistic Costimulation by Both B7 Molecules Regulates Colitis Pathogenesis. Annals of the New York Academy of Sciences, 2006, 1072, 233-241.	1.8	5
162	Immediate antigen-specific effector functions byTCR-transgenic CD8+ NKT cells. European Journal of Immunology, 2006, 36, 570-582.	1.6	16

#	Article	IF	CITATIONS
163	A unique lymphotoxin Âbeta-dependent pathway regulates thymic emigration of VÂ14 invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9160-9165.	3.3	32
164	The Proatherogenic Role of T Cells Requires Cell Division and Is Dependent on the Stage of the Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 353-358.	1.1	23
165	The Complementarity Determining Region 2 of BV8S2 (\hat{V}^2 8.2) Contributes to Antigen Recognition by Rat Invariant NKT Cell TCR. Journal of Immunology, 2006, 176, 7447-7455.	0.4	34
166	Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF- \hat{l}^2 Receptor II Dominant-Negative Mice. Journal of Immunology, 2006, 177, 1655-1660.	0.4	239
167	Design of natural killer T cell activators: Structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3972-3977.	3.3	134
168	Phenotypical and functional alterations during the expansion phase of invariant Valpha14 natural killer T (Valpha14i NKT) cells in mice primed with alpha-galactosylceramide. Immunology, 2005, 116, 30-37.	2.0	19
169	Recognition of bacterial glycosphingolipids by natural killer T cells. Nature, 2005, 434, 520-525.	13.7	865
170	Regulation of immunity by self-reactive T cells. Nature, 2005, 435, 598-604.	13.7	271
171	Mucosal T lymphocytesâ€"peacekeepers and warriors. Seminars in Immunopathology, 2005, 27, 147-165.	4.0	8
172	$\hat{\text{Vl\pm}14}$ i NKT Cells Are Innate Lymphocytes That Participate in the Immune Response to Diverse Microbes. Journal of Clinical Immunology, 2005, 25, 522-533.	2.0	73
173	Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids. PLoS Biology, 2005, 3, e113.	2.6	590
174	Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2010-2015.	3.3	177
175	Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1351-1356.	3.3	218
176	Molecular Basis for the High Affinity Interaction between the Thymic Leukemia Antigen and the CD8 $\hat{i}\pm\hat{l}\pm$ Molecule. Journal of Immunology, 2005, 174, 3501-3507.	0.4	22
177	Lack of Chemokine Receptor CCR5 Promotes Murine Fulminant Liver Failure by Preventing the Apoptosis of Activated CD1d-Restricted NKT Cells. Journal of Immunology, 2005, 174, 8027-8037.	0.4	75
178	Crystal Structure of Mouse CD1d Bound to the Self Ligand Phosphatidylcholine: A Molecular Basis for NKT Cell Activation. Journal of Immunology, 2005, 175, 977-984.	0.4	114
179	Cutting Edge: IFN- \hat{l}^3 Signaling to Macrophages Is Required for Optimal VÎ ± 14 i NK T/NK Cell Cross-Talk. Journal of Immunology, 2005, 174, 3864-3868.	0.4	35
180	The Mouse CD1d Cytoplasmic Tail Mediates CD1d Trafficking and Antigen Presentation by Adaptor Protein 3-Dependent and -Independent Mechanisms. Journal of Immunology, 2005, 174, 3179-3186.	0.4	52

#	Article	IF	Citations
181	Activation or anergy: NKT cells are stunned by Â-galactosylceramide. Journal of Clinical Investigation, 2005, 115, 2328-2329.	3.9	75
182	Carboxylated Glycans Mediate Colitis through Activation of NF-ÎB. Journal of Immunology, 2005, 175, 5412-5422.	0.4	41
183	Cutting Edge: CD4+CD25+ Regulatory T Cells Impaired for Intestinal Homing Can Prevent Colitis. Journal of Immunology, 2005, 174, 7487-7491.	0.4	119
184	Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. Journal of Experimental Medicine, 2005, 202, 529-539.	4.2	142
185	Synthesis and Evaluation of Sphinganine Analogues of KRN7000 and OCH. Journal of Organic Chemistry, 2005, 70, 10260-10270.	1.7	87
186	Infection, Autoimmunity, and Glycolipids: T Cells Detect Microbes through Self-Recognition. Immunity, 2005, 22, 657-659.	6.6	16
187	NKT cells regulate the development of asthma. International Congress Series, 2005, 1285, 184-188.	0.2	1
188	ICOS costimulates invariant NKT cell activation. Biochemical and Biophysical Research Communications, 2005, 327, 201-207.	1.0	42
189	TOWARD AN UNDERSTANDING OF NKT CELL BIOLOGY: Progress and Paradoxes. Annual Review of Immunology, 2005, 23, 877-900.	9.5	917
190	The T cell antigen receptor expressed by VÂ14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12254-12259.	3.3	90
191	CD1d1 Displayed on Cell Size Beads Identifies and Enriches an NK Cell Population Negatively Regulated by CD1d1. Journal of Immunology, 2004, 172, 5304-5312.	0.4	12
192	The Role of Innate Immunity in Autoimmunity. Journal of Experimental Medicine, 2004, 200, 1527-1531.	4.2	37
193	The Third Way: Progress on pathways of antigen processing and presentation by CD1. Immunology and Cell Biology, 2004, 82, 295-306.	1.0	20
194	Presenting fats with SAPs. Nature Immunology, 2004, 5, 126-127.	7.0	5
195	NKT cells: what's in a name?. Nature Reviews Immunology, 2004, 4, 231-237.	10.6	1,097
196	Expansion of human $\hat{\text{Vl}\pm}24+\text{ NKT}$ cells by repeated stimulation with KRN7000. Journal of Immunological Methods, 2004, 285, 197-214.	0.6	73
197	In VivoEffectors: Summary of Part IV. Annals of the New York Academy of Sciences, 2004, 1029, 209-210.	1.8	0
198	Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunology and Cell Biology, 2004, 82, 247-252.	1.0	49

#	Article	IF	CITATIONS
199	Surface receptors identify mouse NK1.1+ T cell subsets distinguished by function and T cell receptor type. European Journal of Immunology, 2004, 34, 56-65.	1.6	41
200	Salmonella typhimurium infection halts development of type 1 diabetes in NOD mice. European Journal of Immunology, 2004, 34, 3246-3256.	1.6	43
201	Going both ways: Immune regulation via CD1d-dependent NKT cells. Journal of Clinical Investigation, 2004, 114, 1379-1388.	3.9	673
202	Going both ways: Immune regulation via CD1d-dependent NKT cells. Journal of Clinical Investigation, 2004, 114, 1379-1388.	3.9	400
203	Surprisingly minor influence of TRAV11 (Vα14) polymorphism on NK T-receptor mCD1/α-galactosylceramide binding kinetics. Immunogenetics, 2003, 54, 874-883.	1.2	12
204	Intrathymic NKT cell development is blocked by the presence of \hat{l}_{\pm} -galactosylceramide. European Journal of Immunology, 2003, 33, 1816-1823.	1.6	56
205	Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. European Journal of Immunology, 2003, 33, 1439-1449.	1.6	304
206	Natural killer T cells: natural or unnatural regulators of autoimmunity?. Current Opinion in Immunology, 2003, 15, 683-689.	2.4	111
207	MHC-dependent and -independent modulation of endogenous Ly49 receptors on NK1.1+ T lymphocytes directed by T-cell receptor type. Immunology, 2003, 110, 313-321.	2.0	18
208	Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nature Medicine, 2003, 9, 582-588.	15.2	639
209	The Crystal Structure of a TL/CD8αα Complex at 2.1 à Resolution. Immunity, 2003, 18, 205-215.	6.6	88
210	Cutaneous Immunization Rapidly Activates Liver Invariant $\hat{Vl}\pm 14$ NKT Cells Stimulating B-1 B Cells to Initiate T Cell Recruitment for Elicitation of Contact Sensitivity. Journal of Experimental Medicine, 2003, 198, 1785-1796.	4.2	154
211	The Adaptor Protein AP-3 Is Required for CD1d-Mediated Antigen Presentation of Glycosphingolipids and Development of $\hat{\text{Vl}}$ ±14i NKT Cells. Journal of Experimental Medicine, 2003, 198, 1133-1146.	4.2	99
212	Mouse $\hat{Vl}\pm 14$ inatural killer T cells are resistant to cytokine polarization vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8395-8400.	3.3	222
213	Constitutive Cytokine mRNAs Mark Natural Killer (NK) and NK T Cells Poised for Rapid Effector Function. Journal of Experimental Medicine, 2003, 198, 1069-1076.	4.2	536
214	Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of Immunology, 2003, 171, 4020-4027.	0.4	273
215	Cross-presentation of Disialoganglioside GD3 to Natural Killer T Cells. Journal of Experimental Medicine, 2003, 198, 173-181.	4.2	257
216	CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10902-10906.	3.3	152

#	Article	IF	CITATIONS
217	NIK-dependent RelB Activation Defines a Unique Signaling Pathway for the Development of Vα14i NKT Cells. Journal of Experimental Medicine, 2003, 197, 1623-1633.	4.2	115
218	An Anti-Inflammatory Role for Vα14 NK T cells in <i>Mycobacterium bovis</i> li>Bacillus Calmette-Guelrin-Infected Mice. Journal of Immunology, 2003, 171, 1961-1968.	0.4	61
219	Cutting Edge: Invariant $\hat{\text{Vl}\pm}14$ NKT Cells Are Required for Allergen-Induced Airway Inflammation and Hyperreactivity in an Experimental Asthma Model. Journal of Immunology, 2003, 171, 1637-1641.	0.4	287
220	Human Invariant $\hat{Vl}\pm 24$ - $\hat{Il}\pm Q$ TCR Supports the Development of CD1d-Dependent NK1.1+ and NK1.1â° T Cells in Transgenic Mice. Journal of Immunology, 2003, 170, 2390-2398.	0.4	29
221	CD1d-expressing Dendritic Cells but Not Thymic Epithelial Cells Can Mediate Negative Selection of NKT Cells. Journal of Experimental Medicine, 2003, 197, 907-918.	4.2	122
222	Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. Journal of Clinical Investigation, 2003, 112, 1211-1222.	3.9	130
223	Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16951-16956.	3.3	156
224	Peptide-Independent Folding and CD8αα Binding by the Nonclassical Class I Molecule, Thymic Leukemia Antigen. Journal of Immunology, 2002, 169, 5708-5714.	0.4	27
225	The $\hat{\text{Vl}\pm}14$ NKT Cell TCR Exhibits High-Affinity Binding to a Glycolipid/CD1d Complex. Journal of Immunology, 2002, 169, 1340-1348.	0.4	119
226	Natural Killer T Cell Ligand \hat{l}_{\pm} -Galactosylceramide Enhances Protective Immunity Induced by Malaria Vaccines. Journal of Experimental Medicine, 2002, 195, 617-624.	4.2	321
227	Colitis-Related Public T Cells Are Selected in the Colonic Lamina Propria of IL-10-Deficient Mice. Clinical Immunology, 2002, 102, 237-248.	1.4	11
228	Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology, 2002, 123, 1031-1043.	0.6	216
229	Precursors of Functional MHC Class I- or Class II-Restricted CD8αα+ T Cells Are Positively Selected in the Thymus by Agonist Self-Peptides. Immunity, 2002, 16, 355-364.	6.6	185
230	CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. Journal of Immunological Methods, 2002, 268, 107-121.	0.6	75
231	Prolonged IFN-γ–producing NKT response induced with α-galactosylceramide–loaded DCs. Nature Immunology, 2002, 3, 867-874.	7.0	507
232	Homeostasis of Vα14i NKT cells. Nature Immunology, 2002, 3, 966-974.	7.0	281
233	The unconventional lifestyle of NKT cells. Nature Reviews Immunology, 2002, 2, 557-568.	10.6	692
234	Glycolipid Antigen Processing for Presentation by CD1d Molecules. Science, 2001, 291, 664-667.	6.0	279

#	Article	IF	Citations
235	The Crohn's Disease-Associated Bacterial Protein I2 Is a Novel Enteric T Cell Superantigen. Immunity, 2001, 15, 149-158.	6.6	96
236	Presentation of self and microbial lipids by CD1 molecules. Current Opinion in Immunology, 2001, 13, 19-25.	2.4	56
237	NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunology, 2001, 2, 971-978.	7.0	356
238	The natural killer T-cell ligand $\hat{l}\pm$ -galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Medicine, 2001, 7, 1052-1056.	15.2	537
239	Activation of natural killer T cells by \hat{l}_{\pm} -galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nature Medicine, 2001, 7, 1057-1062.	15.2	585
240	The A′ and F′ Pockets of Human CD1b Are Both Required for Optimal Presentation of Lipid Antigens to T Cells. Journal of Immunology, 2001, 166, 2562-2570.	0.4	21
241	Activation of Natural Killer T Cells Potentiates or Prevents Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2001, 194, 1789-1799.	4.2	279
242	Human NKT Cells Mediate Antitumor Cytotoxicity Directly by Recognizing Target Cell CD1d with Bound Ligand or Indirectly by Producing IL-2 to Activate NK Cells. Journal of Immunology, 2001, 167, 3114-3122.	0.4	315
243	Transgenic Expression of IL-10 in T Cells Facilitates Development of Experimental Myasthenia Gravis. Journal of Immunology, 2001, 166, 4853-4862.	0.4	38
244	Constitutive Expression of LIGHT on T Cells Leads to Lymphocyte Activation, Inflammation, and Tissue Destruction. Journal of Immunology, 2001, 167, 6330-6337.	0.4	217
245	Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to $\hat{Vl}\pm 14$ NKT cells. International Immunology, 2001, 13, 853-861.	1.8	50
246	T Cell Responses Modulated Through Interaction Between CD8alpha alpha and the Nonclassical MHC Class I Molecule, TL. Science, 2001, 294, 1936-1939.	6.0	242
247	CD1-mediated antigen presentation of glycosphingolipids. Microbes and Infection, 2000, 2, 621-631.	1.0	18
248	Systemic Activation and Antigen-Driven Oligoclonal Expansion of T Cells in a Mouse Model of Colitis. Journal of Immunology, 2000, 164, 2797-2806.	0.4	56
249	Tracking the Response of Natural Killer T Cells to a Glycolipid Antigen Using Cd1d Tetramers. Journal of Experimental Medicine, 2000, 192, 741-754.	4.2	818
250	Membrane Lymphotoxin Is Required for the Development of Different Subpopulations of NK T Cells. Journal of Immunology, 2000, 165, 671-679.	0.4	60
251	Specific Inhibition of Cyclooxygenase 2 Restores Antitumor Reactivity by Altering the Balance of IL-10 and IL-12 Synthesis. Journal of Immunology, 2000, 164, 361-370.	0.4	440
252	The $\hat{l}\pm\hat{l}^2$ T Cell Response to Self-Glycolipids Shows a Novel Mechanism of CD1b Loading and a Requirement for Complex Oligosaccharides. Immunity, 2000, 13, 255-264.	6.6	144

#	Article	IF	Citations
253	Molecular biology of NK T cell specificity and development. Seminars in Immunology, 2000, 12, 561-568.	2.7	39
254	II. The yin and yang of T cells in intestinal inflammation: pathogenic and protective roles in a mouse colitis model. American Journal of Physiology - Renal Physiology, 1999, 276, G1317-G1321.	1.6	32
255	The Murine Nonclassical Class I Major Histocompatibility Complex–like CD1.1 Molecule Protects Target Cells from Lymphokine-activated Killer Cell Cytolysis. Journal of Experimental Medicine, 1999, 189, 483-491.	4.2	45
256	Binding and Antigen Presentation of Ceramide-Containing Glycolipids by Soluble Mouse and Human Cd1d Molecules. Journal of Experimental Medicine, 1999, 190, 1069-1080.	4.2	139
257	CD1-mediated immune responses to glycolipids. Current Opinion in Immunology, 1999, 11, 326-331.	2.4	84
258	Immunization with $\hat{l}\pm$ -galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. European Journal of Immunology, 1999, 29, 2014-2025.	1.6	289
259	Syntheses of Biotinylated \hat{l} ±-Galactosylceramides and Their Effects on the Immune System and CD1 Molecules. Journal of Medicinal Chemistry, 1999, 42, 1836-1841.	2.9	50
260	Presentation of bacterial lipid antigens by CD1 molecules. Trends in Microbiology, 1998, 6, 454-459.	3 . 5	12
261	Molecular Interaction of CD1b with Lipoglycan Antigens. Immunity, 1998, 8, 331-340.	6.6	177
262	CD1d-mediated Recognition of an \hat{l}_{\pm} -Galactosylceramide by Natural Killer T Cells Is Highly Conserved through Mammalian Evolution. Journal of Experimental Medicine, 1998, 188, 1521-1528.	4.2	597
263	An Opposite Pattern of Selection of a Single T Cell Antigen Receptor in the Thymus and among Intraepithelial Lymphocytes. Journal of Experimental Medicine, 1998, 188, 255-265.	4.2	61
264	Altered Immune Responses in Interleukin 10 Transgenic Mice. Journal of Experimental Medicine, 1997, 185, 2101-2110.	4.2	261
265	The Mannose Receptor Delivers Lipoglycan Antigens to Endosomes for Presentation to T Cells by CD1b Molecules. Immunity, 1997, 6, 187-197.	6.6	320
266	The role of CD1 molecules in immune responses to infection. Current Opinion in Immunology, 1997, 9, 456-461.	2.4	28
267	Antigen-presenting Function of the Mouse CD1 Moleculea. Annals of the New York Academy of Sciences, 1996, 778, 288-296.	1.8	11
268	Intestinal Intraepithelial Lymphocytes Respond to Systemic Lymphocytic Choriomeningitis Virus Infection. Cellular Immunology, 1996, 167, 161-169.	1.4	35
269	Antigen-presenting Function of the TL Antigen and Mouse CD1 Molecules. Immunological Reviews, 1995, 147, 31-52.	2.8	24
270	A unique pattern of lymphokine synthesis is a characteristic of certain antigen-specific suppressor T cell clones. International Immunology, 1994, 6, 731-737.	1.8	15

#	Article	IF	Citations
271	Antigens recognized by λδT cells. Current Opinion in Immunology, 1994, 6, 64-71.	2.4	76
272	Decline in CD28+ T cells in centenarians and in long-term T cell cultures: A possible cause for both in vivo and in vitro immunosenescence. Experimental Gerontology, 1994, 29, 601-609.	1.2	354
273	Organization of the V Gene Segments in Mouse T-Cell Antigen Receptor α/δLocus. Genomics, 1994, 20, 419-428.	1.3	42
274	Prevention of experimental autoimmune arthritis with a peptide fragment of type II collagen. European Journal of Immunology, 1993, 23, 591-599.	1.6	58
275	B cells are anergic in transgenic mice that express IgM anti-DNA antibodies. European Journal of Immunology, 1993, 23, 2332-2339.	1.6	48
276	T-Cell Receptor $\hat{I}^3\hat{I}'$ Diversity and Specificity of Intestinal Intraepithelial Lymphocytes: Analysis of IEL-Derived Hybridomas. Cellular Immunology, 1993, 152, 305-322.	1.4	8
277	Expression of mouse Tla region class I genes in tissue enriched for ?? cells. Immunogenetics, 1992, 36, 377-88.	1.2	23
278	Self-tolerance and autoimmunity. Cell, 1991, 65, 537-542.	13.5	32
279	Characterization of a CD4-positive T-cell line derived from an athymic (nu/nu) mouse. Cellular Immunology, 1991, 134, 54-64.	1.4	10
280	Self-Reactive gammadelta T Lymphocytes: Implications for T-Cell Ontogeny and Reactivity. Immunological Reviews, 1991, 120, 51-69.	2.8	16
281	Characterization of collagen-specific T cells derived from pathogenic and nonpathogenic rat T cell lines. Cellular Immunology, 1990, 130, 472-489.	1.4	3
282	Restriction fragment length polymorphisms of the mouse T-cell receptor gene families. Immunogenetics, 1989, 29, 191-201.	1.2	51
283	Molecular and serological diversity of anti-DNA autoantibodies from NZB and (NZB × NZW) F1 mice. Immunology Letters, 1988, 19, 341-349.	1.1	5
284	Idiotype selection is an immunoregulatory mechanism which contributes to the pathogenesis of systemic lupus erythematosus. Journal of Autoimmunity, 1988, 1, 673-681.	3.0	1
285	Mapping genomic organization by field inversion and two-dimensional gel electrophoresis: application to the murine T-cell receptor \hat{I}^3 gene family. Nucleic Acids Research, 1988, 16, 3863-3875.	6.5	30
286	Rearrangement and transcription of the \hat{l}^2 -chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature, 1985, 313, 647-653.	13.7	183
287	The structure, rearrangement and expression of $D\hat{l}^2$ gene segments of the murine T-cell antigen receptor. Nature, 1984, 311, 344-349.	13.7	299
288	The T cell receptor \hat{l}^2 chain genes are located on chromosome 6 in mice and chromosome 7 in humans. Cell, 1984, 37, 1091-1099.	13.5	225

#	Article	IF	CITATIONS
289	Mouse T cell antigen receptor: Structure and organization of constant and joining gene segments encoding the \hat{l}^2 polypeptide. Cell, 1984, 37, 1101-1110.	13.5	422
290	Finding the T-cell antigen receptor: Past attempts and future promise. Cell, 1983, 34, 327-329.	13.5	17