
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6308534/publications.pdf Version: 2024-02-01

ΕΡΙς ΤΟΠΡΝΙÃΩ

#	Article	IF	CITATIONS
1	Crystal Phase Control during Epitaxial Hybridization of Illâ€V Semiconductors with Silicon. Advanced Electronic Materials, 2022, 8, 2100777.	5.1	18
2	Impact of the ridge etchingâ€depth on GaSbâ€based laser diodes. Electronics Letters, 2022, 58, 162-163.	1.0	0
3	Characterization and Simulation of AlGaAsSb/GaSb Tandem Solar Cell. IEEE Journal of Photovoltaics, 2022, 12, 968-975.	2.5	1
4	Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates. Light: Science and Applications, 2022, 11, .	16.6	20
5	Investigation of AlInAsSb/GaSb tandem cells – A first step towards GaSb-based multi-junction solar cells. Solar Energy Materials and Solar Cells, 2021, 219, 110795.	6.2	9
6	GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates. Optics Express, 2021, 29, 11268.	3.4	9
7	Thermal performance of GalnSb quantum well lasers for silicon photonics applications. Applied Physics Letters, 2021, 118, .	3.3	4
8	Near-Field Thermophotovoltaic Conversion with High Electrical Power Density and Cell Efficiency above 14%. Nano Letters, 2021, 21, 4524-4529.	9.1	79
9	Carrier recombination and temperature-dependence of GaInSb quantum well lasers for silicon photonics applications. , 2021, , .		0
10	Modeling and Characterization of an MBE-Grown Concentrator P-N GaSb Solar Cells Using a Pseudo-3D Model. IEEE Journal of Photovoltaics, 2021, 11, 1032-1039.	2.5	1
11	Selective Area Growth by Hydride Vapor Phase Epitaxy and Optical Properties of InAs Nanowire Arrays. Crystal Growth and Design, 2021, 21, 5158-5163.	3.0	5
12	Quantum well interband semiconductor lasers highly tolerant to dislocations. Optica, 2021, 8, 1397.	9.3	14
13	Carrier Recombination Processes in 2.3-µm Epitaxially Grown Mid-Infrared Laser Diodes on Si(001). , 2021, , .		0
14	Molecular-beam epitaxy of GaSb on 6°-offcut (0 0 1) Si using a GaAs nucleation layer. Journal of Crystal Growth, 2020, 529, 125299.	1.5	6
15	Interband mid-infrared lasers. , 2020, , 91-130.		7
16	Optical properties and dynamics of excitons in Ga(Sb, Bi)/GaSb quantum wells: evidence for a regular alloy behavior. Semiconductor Science and Technology, 2020, 35, 025024.	2.0	3
17	Progress in Interband Cascade Lasers: From Edge Emitting Lasers to VCSELs. , 2020, , .		0
18	InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate. APL Photonics, 2020, 5, .	5.7	22

#	Article	IF	CITATIONS
19	Morphological Control of InN Nanorods by Selective Area Growth–Hydride Vapor-Phase Epitaxy. Crystal Growth and Design, 2020, 20, 2232-2239.	3.0	5
20	Zinc-blende group III-V/group IV epitaxy: Importance of the miscut. Physical Review Materials, 2020, 4, .	2.4	23
21	Etched-cavity GaSb laser diodes on a MOVPE GaSb-on-Si template. Optics Express, 2020, 28, 20785.	3.4	9
22	Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon. Optica, 2020, 7, 263.	9.3	42
23	3.3 Âμm interband-cascade resonant-cavity light-emitting diode with narrow spectral emission linewidth. Semiconductor Science and Technology, 2020, 35, 125029.	2.0	6
24	Improved efficiency of GaSb solar cells using an Al0.50Ga0.50As0.04Sb0.96 window layer. Solar Energy Materials and Solar Cells, 2019, 200, 110042.	6.2	14
25	The Interaction of Extended Defects as the Origin of Step Bunching in Epitaxial Ill–V Layers on Vicinal Si(001) Substrates. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900290.	2.4	3
26	GaSbBi Alloys and Heterostructures: Fabrication and Properties. Springer Series in Materials Science, 2019, , 125-161.	0.6	1
27	Molecular-beam epitaxy of GaInSbBi alloys. Journal of Applied Physics, 2019, 126, .	2.5	6
28	Indium antimonide photovoltaic cells for near-field thermophotovoltaics. Solar Energy Materials and Solar Cells, 2019, 203, 110190.	6.2	15
29	Type I GaSb1-xBix/GaSb quantum wells dedicated for mid infrared laser applications: Photoreflectance studies of bandgap alignment. Journal of Applied Physics, 2019, 125, .	2.5	16
30	Terahertz Spectroscopy of Two-Dimensional Semimetal in Three-Layer InAs/GaSb/InAs Quantum Well. JETP Letters, 2019, 109, 96-101.	1.4	4
31	Selective growth of ordered hexagonal InN nanorods. CrystEngComm, 2019, 21, 2702-2708.	2.6	13
32	Massless Dirac fermions in III-V semiconductor quantum wells. Physical Review B, 2019, 99, .	3.2	14
33	Toward MIR VCSELs operating in CW at RT. , 2019, , .		0
34	InAs/GaSb thin layers directly grown on nominal (0â€ ⁻ 0â€ ⁻ 1)-Si substrate by MOVPE for the fabrication of InAs FINFET. Journal of Crystal Growth, 2019, 510, 18-22.	1.5	3
35	GaSb-based solar cells for multi-junction integration on Si substrates. Solar Energy Materials and Solar Cells, 2019, 191, 444-450.	6.2	13
36	Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Physics and Technology, 2019, 96, 39-43.	2.9	29

#	Article	IF	CITATIONS
37	Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics. Optics Express, 2019, 27, A11.	3.4	31
38	Interband cascade Lasers with AlGaAsSb cladding layers emitting at 33â€Âµm. Optics Express, 2019, 27, 31425.	3.4	10
39	Microstructure and interface analysis of emerging Ga(Sb,Bi) epilayers and Ga(Sb,Bi)/GaSb quantum wells for optoelectronic applications. Applied Physics Letters, 2018, 112, .	3.3	14
40	On the origin of threading dislocations during epitaxial growth of III-Sb on Si(001): A comprehensive transmission electron tomography and microscopy study. Acta Materialia, 2018, 143, 121-129.	7.9	12
41	Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition. Thin Solid Films, 2018, 645, 5-9.	1.8	18
42	Pedestal formation of all-semiconductor gratings through GaSb oxidation for mid-IR plasmonics. Journal Physics D: Applied Physics, 2018, 51, 015104.	2.8	5
43	Quantum cascade lasers grown on silicon. , 2018, , .		0
44	Investigation of antimonide-based semiconductors for high-efficiency multi-junction solar cells. , 2018, , .		4
45	Interface energy analysis of Ill–V islands on Si (001) in the Volmer-Weber growth mode. Applied Physics Letters, 2018, 113, .	3.3	14
46	Epitaxial Integration of Antimonide-Based Semiconductor Lasers on Si. Semiconductors and Semimetals, 2018, , 1-25.	0.7	2
47	A Stressâ€Free and Textured GaP Template on Silicon for Solar Water Splitting. Advanced Functional Materials, 2018, 28, 1801585.	14.9	22
48	In situ determination of the growth conditions of GaSbBi alloys. Journal of Crystal Growth, 2018, 495, 9-13.	1.5	7
49	Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics. Applied Surface Science, 2018, 451, 241-249.	6.1	12
50	Temperature-dependent terahertz spectroscopy of inverted-band three-layer InAs/GaSb/InAs quantum well. Physical Review B, 2018, 97, .	3.2	24
51	Transmission electron microscopy of Ga(Sb, Bi)/GaSb quantum wells with varying Bi content and quantum well thickness. Semiconductor Science and Technology, 2018, 33, 094006.	2.0	4
52	GaSb Lasers Grown on Silicon Substrate for Telecom Applications. , 2018, , 625-635.		2
53	Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water. Semiconductor Science and Technology, 2018, 33, 095009.	2.0	3
54	Quantum cascade lasers grown on silicon. Scientific Reports, 2018, 8, 7206.	3.3	56

ARTICLE IF CITATIONS Universal description of III-V/Si epitaxial growth processes. Physical Review Materials, 2018, 2, . AlInAsSb for GaSb-based multi-junction solar cells., 2018, , . 56 3 LACBED analysis of the chemical composition of compound semiconductor strained layers., 2018,, 221-224. Electron tomography on III-Sb heterostructures on vicinal Si(001) substrates: Anti-phase boundaries as 58 5.2 9 a sink for threading dislocations. Scripta Materialia, 2017, 132, 5-8. Characterization of antimonide based material grown by molecular epitaxy on vicinal silicon 1.5 substrates via a low temperature AlSb nucleation layer. Journal of Crystal Growth, 2017, 477, 65-71. Growth and characterization of AllnAsSb layers lattice-matched to GaSb. Journal of Crystal Growth, 60 1.5 9 2017, 477, 72-76. GaSbBi/GaSb quantum well laser diodes. Applied Physics Letters, 2017, 110, . 3.3 Molecular beam epitaxy and characterization of high Bi content GaSbBi alloys. Journal of Crystal 62 1.5 39 Growth, 2017, 477, 144-148. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband 6.0 surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics, 2017, 7, 507-516. 64 III-V lasers epitaxially grown on Si., 2017, , . 0 From 1-dimensional to 2-dimensional periodic semiconductor plasmonic resonators: Designing the optical response for sensing applications., 2017,,. Magnetoabsorption of Dirac Fermions in InAs/GaSb/InAs "Three-Layer―Gapless Quantum Wells. JETP 66 1.4 5 Letters, 2017, 106, 727-732. Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion. Optical 14 Materials Express, 2017, 7, 3011. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas. Optics Express, 2017, 68 3.4 15 25, 26651. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers 36 monolithically grown on Si. APL Photonics, 2017, 2, . Plasmonic bio-sensing based on highly doped semiconductors., 2017,,. 70 2 Anisotropic strain relaxation and growth mode dependence in highly lattice mismatched III-V systems. , 71 2017, , 389-392. First orientation-patterned GaSb ridge waveguides fabrication and preliminary characterization for 72 0.8 1 frequency conversion in the mid-infrared. Proceedings of SPIE, 2016, , .

ERIC TOURNIÃ©

#	Article	IF	CITATIONS
73	Metamorphic III–V semiconductor lasers grown on silicon. MRS Bulletin, 2016, 41, 218-223.	3.5	47
74	Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures. Nanotechnology, 2016, 27, 425201.	2.6	23
75	GaSb lasers grown on Silicon substrate emitting in the telecom wavelength range. , 2016, , .		0
76	X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates. Journal of Crystal Growth, 2016, 439, 33-39.	1.5	32
77	Terahertz studies of 2D and 3D topological transitions. Journal of Physics: Conference Series, 2015, 647, 012037.	0.4	0
78	Mid-infrared characterization of refractive indices and propagation losses in GaSb/AlXGa1â^'XAsSb waveguides. Applied Physics Letters, 2015, 107, .	3.3	15
79	GaSb-based composite quantum wells for laser diodes operating in the telecom wavelength range near 1.55- <i>μ</i> m. Applied Physics Letters, 2015, 106, .	3.3	12
80	Observation of Fano resonances in highly doped semiconductors plasmonic resonators (Presentation) Tj ETQqC	0 0 rgBT /	Overlock 10 ⁻
81	Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix. Optics Express, 2015, 23, 29423.	3.4	10
82	Silicon surface preparation for III-V molecular beam epitaxy. Journal of Crystal Growth, 2015, 413, 17-24.	1.5	27
83	M-lines characterization of the refractive index of GaSb and AlXGa1-XAsSb lattice-matched onto GaSb in the mid-infrared. , 2015, , .		0
84	Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. Optics Express, 2014, 22, 27300.	3.4	26
85	Brewster "mode―in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. Optics Express, 2014, 22, 24294.	3.4	54
86	Long-wavelength silicon photonic integrated circuits. , 2014, , .		0
87	Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 394-404.	2.9	106
88	Recombination channels in 2.4–3.2 µm GalnAsSb quantum-well lasers. Semiconductor Science and Technology, 2013, 28, 015015.	2.0	17
89	Mid-IR heterogeneous silicon photonics. Proceedings of SPIE, 2013, , .	0.8	2
90	Mid-IR GaSb-Based Bipolar Cascade VCSELs. IEEE Photonics Technology Letters, 2013, 25, 882-884.	2.5	14

#	Article	IF	CITATIONS
91	Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline. Applied Energy, 2013, 102, 44-54.	10.1	140
92	All-semiconductor plasmonics for mid-IR applications. , 2013, , .		3
93	Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 2013, 21, 6101.	3.4	82
94	Silicon-based heterogeneous photonic integrated circuits for the mid-infrared. Optical Materials Express, 2013, 3, 1523.	3.0	65
95	Mid-IR GaSb-based monolithic vertical-cavity surface-emitting lasers. Journal Physics D: Applied Physics, 2013, 46, 495101.	2.8	6
96	GaSb-based all-semiconductor mid-IR plasmonics. , 2013, , .		3
97	Integrated thin-film GaSb-based Fabry-Perot lasers: towards a fully integrated spectrometer on a SOI waveguide circuit. , 2013, , .		5
98	Atomic structure of tensile-strained GaAs/GaSb(001) nanostructures. Applied Physics Letters, 2013, 102,	3.3	7
99	Silicon-on-Insulator spectrometers with integrated GaInAsSb photodiode array for wideband operation from 1500 to 2300 nm , 2013, , .		0
100	Selective lateral etching of InAs/GaSb tunnel junctions for mid-infrared photonics. Semiconductor Science and Technology, 2012, 27, 085011.	2.0	8
101	Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip. Optics Express, 2012, 20, 11665.	3.4	51
102	Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser. Optics Express, 2012, 20, 15540.	3.4	22
103	Localized surface plasmon resonances in highly doped semiconductors nanostructures. Applied Physics Letters, 2012, 101, .	3.3	58
104	Integrated spectrometer and integrated detectors on Silicon-on-Insulator for short-wave infrared applications. , 2012, , .		1
105	High temperature continuous wave operation of Sb-based monolithic EP-VCSEL with Selectively Etched Tunnel-Junction Apertures. , 2012, , .		0
106	Mid-Infrared Semiconductor Lasers. Semiconductors and Semimetals, 2012, , 183-226.	0.7	42
107	Pseudo volume plasmon in arrays of doped and un-doped semiconductors. Applied Physics A: Materials Science and Processing, 2012, 109, 927-934.	2.3	0
108	Arrays of doped and un-doped semiconductors for sensor applications. Applied Physics A: Materials Science and Processing, 2012, 109, 943-947.	2.3	3

#	Article	IF	CITATIONS
109	Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: A chemometric approach. Analytica Chimica Acta, 2012, 717, 28-38.	5.4	39
110	GaSb-based integrated lasers and photodetectors on a Silicon-On-Insulator waveguide circuit for sensing applications in the shortwave infrared. , 2012, , .		6
111	GaSb-based laser monolithically grown on Si substrate by molecular beam epitaxy. , 2012, , .		О
112	III–V/Silicon Photonics for Short-Wave Infrared Spectroscopy. IEEE Journal of Quantum Electronics, 2012, 48, 292-298.	1.9	8
113	Heterogeneous Integration of GaInAsSb p-i-n Photodiodes on a Silicon-on-Insulator Waveguide Circuit. IEEE Photonics Technology Letters, 2011, 23, 1760-1762.	2.5	34
114	Note: A high transmission Faraday optical isolator in the 9.2 μm range. Review of Scientific Instruments, 2011, 82, 096106.	1.3	8
115	Heterogeneous GaSb/SOI mid-infrared photonic integrated circuits for spectroscopic applications. , 2011, , .		3
116	Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011, 99, .	3.3	78
117	Heterogeneously integrated InGaAsSb detectors on SOI waveguide circuits for short-wave infrared applications. , 2011, , .		Ο
118	Non-random Be-to-Zn substitution in ZnBeSe alloys: Raman scattering and ab initio calculations. European Physical Journal B, 2010, 73, 461-469.	1.5	9
119	Sb-based laser sources grown by molecular beam epitaxy on silicon substrates. Proceedings of SPIE, 2010, , .	0.8	Ο
120	Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy. Applied Physics Letters, 2010, 96, .	3.3	44
121	Highly tensile-strained, type-II, Ga1â^'xInxAs/GaSb quantum wells. Applied Physics Letters, 2010, 96, .	3.3	12
122	GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 \$mu\$m at Room Temperature. IEEE Photonics Technology Letters, 2010, 22, 553-555.	2.5	67
123	Optical performances of InAs/GaSb/InSb short-period superlattice laser diode for mid-infrared emission. Journal of Applied Physics, 2010, 108, 093107.	2.5	14
124	Modelling of an InAs/GaSb/InSb short-period superlattice laser diode for mid-infrared emission by the k.p method. Journal Physics D: Applied Physics, 2010, 43, 325102.	2.8	14
125	GaSb-based mid-IR electrically-pumped VCSELs covering the wavelength range from 2.3 to 2.7 µm. , 2009, , .		0
126	InAs/GaSb/InSb short-period super-lattice diode lasers emitting near 3.3â€[micro sign]m at room-temperature. Electronics Letters, 2009, 45, 165.	1.0	11

#	Article	IF	CITATIONS
127	Interface properties of (Ga,In)(N,As) and (Ga,In)(As,Sb) materials systems grown by molecular beam epitaxy. Journal of Crystal Growth, 2009, 311, 1739-1744.	1.5	23
128	MBE growth of mid-IR diode lasers based on InAs/GaSb/InSb short-period superlattice active zones. Journal of Crystal Growth, 2009, 311, 1905-1907.	1.5	6
129	GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3μm) grown by MBE. Journal of Crystal Growth, 2009, 311, 1912-1916.	1.5	29
130	Mid-infrared GaSb-based EP-VCSEL emitting at 2.63â€[micro sign]m. Electronics Letters, 2009, 45, 265.	1.0	33
131	Room-temperature operation of a 2.25â€,î¼m electrically pumped laser fabricated on a silicon substrate. Applied Physics Letters, 2009, 94, .	3.3	37
132	Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells. Electronics Letters, 2009, 45, 1320.	1.0	5
133	GaSb-based, 2.2â€,μ4m type-l laser fabricated on GaAs substrate operating continuous wave at room temperature. Applied Physics Letters, 2009, 94, 023506.	3.3	40
134	Room temperature, continuous wave operation of an Sb-based laser grown on GaAs substrate. , 2009, ,		0
135	Demonstration of laser operation at room-temperature of an Sb-based mid-infrared multi-quantum-well structure monolithically grown on a Silicon substrate. , 2009, , .		0
136	Subpicosecond timescale carrier dynamics in GaInAsSbâ^•AlGaAsSb double quantum wells emitting at 2.3μm. Applied Physics Letters, 2008, 92, .	3.3	20
137	S20 photocathodes grown by molecular-beam deposition. Electronics Letters, 2008, 44, 315.	1.0	1
138	Type II transition in InSb-based nanostructures for midinfrared applications. Journal of Applied Physics, 2008, 103, 114516.	2.5	9
139	Transmission Electron Microscopy Study of Sb-Based Quantum Dots. Springer Proceedings in Physics, 2008, , 251-254.	0.2	0
140	InAs/GaSb short-period superlattice injection lasers operating in 2.5â€[micro sign]m–3.5â€[micro sign]m mid-infrared wavelength range, Electronics Letters, 2007, 43, 1285.	1.0	15
141	xmlns:mml="http://www.w3.org/1998/Math/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">In<mml:mi mathvariant="normal">Sb<mml:mo>â^•</mml:mo><mml:mi mathvariant="normal">Ca<mml:mi< td=""><td>3.2</td><td>9</td></mml:mi<></mml:mi </mml:mi </mml:mi </mml:mrow>	3.2	9
142	mathvariant="normal"-Sb communic communications communications efforts enabled quantum dots. Physical R Molecular-beam epitaxy of InSb/GaSb quantum dots. Journal of Applied Physics, 2007, 101, 124309.	2.5	31
143	High-density InSb-based quantum dots emitting in the mid-infrared. Journal of Crystal Growth, 2007, 301-302, 713-717.	1.5	18
144	Growth and characterization of GaInSb/GaInAsSb hole-well laser diodes emitting near 2.93μm. Journal of Crystal Growth, 2007, 301-302, 967-970.	1.5	3

#	Article	IF	CITATIONS
145	Interface analysis of InAs/GaSb superlattice grown by MBE. Journal of Crystal Growth, 2007, 301-302, 889-892.	1.5	47
146	Investigations of InSb-based quantum dots grown by molecular-beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1743-1746.	0.8	1
147	MBE growth and interface formation of compound semiconductor heterostructures for optoelectronics. Physica Status Solidi (B): Basic Research, 2007, 244, 2683-2696.	1.5	11
148	Structural and optical properties of InSb quantum dots for mid-IR applications. Physica Status Solidi (B): Basic Research, 2006, 243, 3959-3962.	1.5	8
149	Correlation between quantum well morphology, carrier localization and the optoelectronic properties of GalnNAs/GaAs light emitting diodes. Semiconductor Science and Technology, 2006, 21, 1047-1052.	2.0	5
150	High-density, uniform InSbâ^•GaSb quantum dots emitting in the midinfrared region. Applied Physics Letters, 2006, 89, 263118.	3.3	26
151	720 mW continuous wave room temperature operation diode laser emitting at around 2.4 $\rm \hat{l}4$ m. , 2005, 5989, 81.		1
152	LO multi-phonons cooperative phenomenon in ZnSe–BeSemixed crystals. Journal of Physics and Chemistry of Solids, 2005, 66, 2099-2103.	4.0	4
153	Percolation picture for long wavelength phonons in zinc blende alloys: application to GaInAs. Journal of Physics and Chemistry of Solids, 2005, 66, 2094-2098.	4.0	0
154	Decomposition in as-grown (Ga,In)(N,As) quantum wells. Applied Physics Letters, 2005, 87, 171901.	3.3	40
155	Correlation between interface structure and light emission at 1.3–1.55 μm of (Ga,In)(N,As) diluted nitride heterostructures on GaAs substrates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2195.	1.6	34
156	Long-wave phonons inZnSeâ^'BeSemixed crystals: Raman scattering and percolation model. Physical Review B, 2004, 70, .	3.2	28
157	Be–Se double-phonon behavior in Zn1â^'xâ^'yMgyBexSe alloy. Journal of Applied Physics, 2004, 95, 7690-7693.	2.5	4
158	Carrier recombination processes in GaAsN: from the dilute limit to alloying. IEE Proceedings: Optoelectronics, 2004, 151, 365-368.	0.8	4
159	Percolation-based multimode Ga–N behaviour in the Raman spectra of GalnAsN. IEE Proceedings: Optoelectronics, 2004, 151, 338-341.	0.8	0
160	Giant LO oscillation in the Zn1â^'xBex(Se,Te) multi-phonons percolative alloys. Thin Solid Films, 2004, 450, 195-198.	1.8	5
161	Does In-bonding delay GaN-segregation in GaInAsN? A Raman study. Applied Physics Letters, 2004, 85, 5872-5874.	3.3	11
162	Nanoscale analysis of the In and N spatial redistributions upon annealing of GalnNAs quantum wells. Applied Physics Letters, 2004, 84, 2503-2505.	3.3	57

#	Article	IF	CITATIONS
163	From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction. Physical Review B, 2004, 69, .	3.2	34
164	Dominant carrier recombination mechanisms in GalnNAsâ^•GaAs quantum well light-emitting diodes. Applied Physics Letters, 2004, 85, 40-42.	3.3	7
165	Bi-modal Raman response of Be–Se vibration in Zn1â^â^Mg Be Se alloys. Journal of Alloys and Compounds, 2004, 382, 271-274.	5.5	7
166	Effect of nitrogen on the band structure and material gain of In/sub y/Ga/sub 1-y/As/sub 1-x/N/sub x/-GaAs quantum wells. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 716-722.	2.9	16
167	Correlations between structural and optical properties of GalnNAs quantum wells grown by MBE. Journal of Crystal Growth, 2003, 251, 383-387.	1.5	31
168	Percolation context in mixed crystals with mechanical contrast. Journal of Physics and Chemistry of Solids, 2003, 64, 1585-1590.	4.0	2
169	LO phonon–plasmon coupling and mechanical disorder-induced effect in the Raman spectra of GaAsN alloys. Solid-State Electronics, 2003, 47, 455-460.	1.4	5
170	Photoluminescence spectroscopy of Ga(In)NAs quantum wells for emission at 1.5 μm. Solid-State Electronics, 2003, 47, 477-482.	1.4	11
171	Coexistence in photoluminescence of free exciton and bound exciton in low nitrogen content GalnNAs layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2631-2634.	0.8	0
172	Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. Journal Physics D: Applied Physics, 2003, 36, L5-L9.	2.8	74
173	Annealing effects on the crystal structure of GalnNAs quantum wells with large In and N content grown by molecular beam epitaxy. Journal of Applied Physics, 2003, 94, 2319-2324.	2.5	60
174	GaInNAs/GaAs quantum wells grown by molecular-beam epitaxy emitting above 1.5 μm. Applied Physics Letters, 2003, 82, 1845-1847.	3.3	38
175	Percolation-based vibrational picture to estimate nonrandom N substitution in GaAsN alloys. Applied Physics Letters, 2003, 82, 2808-2810.	3.3	18
176	Isoelectronic traps in heavily doped GaAs:(In,N). Physical Review B, 2003, 68, .	3.2	14
177	Interplay between the growth temperature, microstructure, and optical properties of GaInNAs quantum wells. Applied Physics Letters, 2003, 82, 3451-3453.	3.3	36
178	Mechanisms affecting the photoluminescence spectra of GaInNAs after post-growth annealing. Applied Physics Letters, 2002, 80, 4148-4150.	3.3	85
179	Nanoindentation study of Zn1ÂxBexSe heteroepitaxial layers. Journal Physics D: Applied Physics, 2002, 35, 3015-3020.	2.8	24
180	Raman study of Zn1â^'xBexSe/GaAs systems with low Be content (x⩽0.20). Journal of Applied Physics, 2002, 91, 9187-9197.	2.5	14

#	Article	IF	CITATIONS
181	Raman study of Zn1â^'xBexSe/GaAs systems with low Be-content (xâ‰ 0 .31). Thin Solid Films, 2002, 403-404, 530-534.	1.8	1
182	LO phonon-plasmon coupling in N-doped Zn1â^'xBex Se/GaAs (xâ‰ 6 .15). Thin Solid Films, 2002, 403-404, 535-538.	1.8	0
183	Vibrational Evidence for Percolative Behavior in ZnBeSe. Physica Status Solidi (B): Basic Research, 2002, 229, 25-29.	1.5	7
184	Self-Compensation of the Phosphorus Acceptor in ZnSe. Physica Status Solidi (B): Basic Research, 2002, 229, 251-255.	1.5	3
185	Displaced Substitutional Phosphorus Acceptors in Zinc Selenide. Physica Status Solidi (B): Basic Research, 2002, 229, 257-260.	1.5	4
186	Light-Hole and Heavy-Hole Excitons: the Right Probe for the Physics of Low N Content GaAsN. Physica Status Solidi (B): Basic Research, 2002, 234, 778-781.	1.5	1
187	Electronic structure and radiative lifetimes of ideal Zn1â°'xBexSe alloys. Solid State Communications, 2002, 123, 209-212.	1.9	11
188	Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection. IEEE Journal of Quantum Electronics, 2001, 37, 1146-1152.	1.9	37
189	Raman study of ZnxBe1â^'xSe solid solutions. Optical Materials, 2001, 17, 323-326.	3.6	6
190	Wide-band-gap ZnMgBeSe alloys grown onto GaAs by molecular beam epitaxy. Journal of Crystal Growth, 2001, 223, 461-465.	1.5	8
191	Direct evidence for the trigonal symmetry of shallow phosphorus acceptors in ZnSe. Physical Review B, 2001, 64, .	3.2	9
192	On the origin of carrier localization in Ga1â^'xInxNyAs1â^'y/GaAs quantum wells. Applied Physics Letters, 2001, 78, 1562-1564.	3.3	130
193	Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes. Applied Physics Letters, 2001, 78, 4190-4192.	3.3	29
194	Vibrational evidence for a percolative behavior inZn1â^'xBexSe. Physical Review B, 2001, 65, .	3.2	37
195	Influence of alloy stability on the photoluminescence properties of GaAsN/GaAs quantum wells grown by molecular beam epitaxy. Applied Physics Letters, 2001, 79, 3404-3406.	3.3	40
196	ZnSe- and ZnMgBeSe-Based Schottky Barrier Photodetectors for the Blue and Ultraviolet Spectral Range. Physica Status Solidi A, 2000, 180, 301-305.	1.7	3
197	Molecular beam epitaxial growth and characterization of Be(Zn)Se on Si(001) and GaAs(001). Journal of Crystal Growth, 2000, 214-215, 95-99.	1.5	11
198	Hydrogen/deuterium: a probe to investigate carrier-compensation in ZnSe:N. Journal of Crystal Growth, 2000, 214-215, 507-510.	1.5	3

#	Article	IF	CITATIONS
199	ZnSe-based heterostructures for blue-green lasers. Comptes Rendus Physique, 2000, 1, 23-33.	0.1	2
200	Molecular beam epitaxy of ZnxBe1â^'xSe: Influence of the substrate nature and epilayer properties. Journal of Electronic Materials, 2000, 29, 883-886.	2.2	6
201	ZnSe-based Schottky barrier photodetectors. Electronics Letters, 2000, 36, 352.	1.0	19
202	Transmission electron microscopy study of crystal defects in ZnSe/GaAs(001) epilayers. Journal of Physics Condensed Matter, 2000, 12, 10287-10293.	1.8	6
203	Long wavelength GaInNAs/GaAs quantum-well heterostructures grown by solid-source molecular-beam epitaxy. Applied Physics Letters, 2000, 77, 2189-2191.	3.3	42
204	Zn(Mg)BeSe-based p-i-n photodiodes operating in the blue-violet and near-ultraviolet spectral range. Applied Physics Letters, 2000, 76, 242-244.	3.3	23
205	Spectroscopy of the phosphorus impurity in ZnSe epitaxial layers grown by molecular-beam epitaxy. Physical Review B, 2000, 61, 15789-15796.	3.2	22
206	Spectroscopy of the interaction between nitrogen and hydrogen in ZnSe epitaxial layers. Physical Review B, 2000, 62, 12868-12874.	3.2	4
207	Raman study of ZnxBe1â ^{~,} xSe alloy (100) epitaxial layers. Applied Physics Letters, 2000, 77, 519-521.	3.3	25
208	Native vacancies in nitrogen-doped and undoped ZnSe layers studied by positron annihilation. Physical Review B, 2000, 62, 15711-15717.	3.2	8
209	Study of the band alignment in (Zn, Cd)Se/ZnSe quantum wells by means of photoluminescence excitation spectroscopy. Journal of Applied Physics, 2000, 87, 1863-1868.	2.5	7
210	Nature of the band gap inZn1â^'xBexSealloys. Physical Review B, 2000, 61, 5332-5336.	3.2	47
211	Ohmic contacts to p-type ZnSe using a ZnSe/BeTe superlattice. Applied Physics Letters, 1999, 75, 3345-3347.	3.3	11
212	Evidence of N-related compensating donors in lightly doped ZnSe:N. Applied Physics Letters, 1999, 74, 2200-2202.	3.3	17
213	Interactions of intentionally diffused hydrogen with nitrogen acceptors and nitrogen related donor centers in molecular beam epitaxy grown ZnSe. Journal of Applied Physics, 1999, 86, 1393-1397.	2.5	4
214	p-type doping of Zn(Mg)BeSe epitaxial layers. Applied Physics Letters, 1999, 75, 382-384.	3.3	14
215	Molecular-beam epitaxy of BeTe layers on GaAs substrates. Journal of Crystal Growth, 1999, 201-202, 494-497.	1.5	1
216	Investigations by high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM) of (BeTe/ZnSe) superlattices grown by molecular beam epitaxy onto GaAs buffer epilayer. Journal of Crystal Growth, 1999, 201-202, 498-501.	1.5	6

#	Article	IF	CITATIONS
217	Molecular-beam epitaxy of ZnxBe1â^'xSe layers on vicinal Si(001) substrates. Journal of Crystal Growth, 1999, 201-202, 514-517.	1.5	6
218	p-Type doping of ZnSe and related materials controlled by diluting nitrogen in an inert gas. Journal of Crystal Growth, 1999, 201-202, 938-941.	1.5	3
219	New developments in the heteroepitaxial growth of Be-chalcogenides based semiconducting alloys. Journal of Electronic Materials, 1999, 28, 662-665.	2.2	11
220	The phosphorus acceptor in ZnSe. Journal of Crystal Growth, 1998, 184-185, 515-519.	1.5	12
221	The nitrogen-related shallow donor in ZnSe : N epitaxial layers. Journal of Crystal Growth, 1998, 184-185, 520-524.	1.5	7
222	A study of luminescence thermal quenching in ZnCdSe/ZnSSe quantum wells for the optimal design of blue laser structures. Journal of Crystal Growth, 1998, 184-185, 591-595.	1.5	3
223	Band offset determination of the Zn1â^'xCdxSe/ZnSe interface. Journal of Crystal Growth, 1998, 184-185, 839-843.	1.5	5
224	New results on the solid-phase recrystallisation of ZnSe. Journal of Crystal Growth, 1998, 184-185, 1021-1025.	1.5	13
225	Hetero-epitaxial growth of BexZn1â^'xSe on Si(0 0 1) and GaAs(0 0 1) substrates. Journal of Crystal Growth, 1998, 184-185, 11-15.	1.5	32
226	Defect density in ZnSe pseudomorphic layers grown by molecular beam epitaxy on to various GaAs buffer layers. Journal of Crystal Growth, 1998, 192, 102-108.	1.5	18
227	New results and trends in the solid phase recrystallization of ZnSe. Materials Letters, 1998, 36, 162-166.	2.6	11
228	Critical thickness of Zn1â^'xCdxSe/ZnSe heterostructures grown on relaxed ZnSe buffer layers on bare GaAs substrates. Applied Physics Letters, 1998, 72, 217-219.	3.3	5
229	Heteroepitaxial growth of BeSe on vicinal Si(001) surfaces. Applied Physics Letters, 1998, 73, 957-959.	3.3	15
230	Anisotropic misfit dislocation nucleation in two-dimensional grown InAs/GaAs(001) heterostructures. Applied Physics Letters, 1998, 73, 1074-1076.	3.3	17
231	Molecular-beam epitaxy of BeTe layers on GaAs substrates studied via reflection high-energy electron diffraction. Applied Physics Letters, 1998, 72, 2859-2861.	3.3	11
232	Scattered light noise in gravitational wave interferometric detectors: A statistical approach. Physical Review D, 1997, 56, 6085-6095.	4.7	47
233	Self-compensation in nitrogen-doped ZnSe. Physical Review B, 1997, 56, R1657-R1660.	3.2	22
234	(001) GaAs substrate preparation for direct ZnSe heteroepitaxy. Journal of Applied Physics, 1997, 81, 7012-7017.	2.5	14

#	Article	IF	CITATIONS
235	Structural and optical properties of lattice-matched ZnBeSe layers grown by molecular-beam epitaxy onto GaAs substrates. Applied Physics Letters, 1997, 70, 3564-3566.	3.3	37
236	Issues in molecular-beam epitaxy of ZnSe-based heterostructures for blue-green lasers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 43, 21-28.	3.5	11
237	Exciton Relaxation Dynamics in (Zn, Cd)Se/ZnSe Quantum Well. Physica Status Solidi A, 1997, 164, 217-220.	1.7	1
238	ZnSe homoepitaxial growth on solid-phase recrystallized substrates. Journal of Crystal Growth, 1997, 175-176, 577-582.	1.5	7
239	Simulations of heteroepitaxial growth. Journal of Crystal Growth, 1997, 178, 258-267.	1.5	33
240	Microstructural study of pseudomorphic ZnSe films grown on bare GaAs substrates. Journal of Crystal Growth, 1997, 182, 45-52.	1.5	5
241	Photoluminescence study of ZnSe single crystals grown by solidâ€phase recrystallization. Applied Physics Letters, 1996, 68, 1356-1358.	3.3	41
242	Spectroscopy of biexcitons in strained-layer quantum wells. Journal of Crystal Growth, 1996, 159, 546-550.	1.5	2
243	Structural and optical characterization of ZnSe single crystals grown by solidâ€phase recrystallization. Journal of Applied Physics, 1996, 80, 2983-2989.	2.5	44
244	Molecularâ€beam epitaxy of highâ€quality ZnSe homoâ€epitaxial layers on solidâ€phase recrystallized substrates. Applied Physics Letters, 1996, 69, 3221-3223.	3.3	12
245	Spectroscopy of donor-acceptor pairs in nitrogen-doped ZnSe. Physical Review B, 1996, 54, 4714-4721.	3.2	34
246	Time-resolved photoluminescence and steady-state optical investigations of a Zn1â^'x Cd x Se/ZnSe quantum well. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1435-1440.	0.4	3
247	Current Activity in CNRSâ€Sophia Antipolis Regarding Wideâ€Gap II–VI Materials. Physica Status Solidi (B): Basic Research, 1995, 187, 457-466.	1.5	9
248	Defect control during growth of highly mismatched (100). Journal of Crystal Growth, 1995, 146, 368-373.	1.5	24
249	Surfactant-mediated molecular-beam epitaxy of III–V strained-layer heterostructures. Journal of Crystal Growth, 1995, 150, 460-466.	1.5	39
250	Aspects of low heterostructure symmetry in (311)A (In,Ga)As/GaAs. Journal of Crystal Growth, 1995, 150, 482-486.	1.5	2
251	Novel plastic strainâ€relaxation mode in highly mismatched IIIâ€V layers induced by twoâ€dimensional epitaxial growth. Applied Physics Letters, 1995, 66, 2265-2267.	3.3	63
252	Structural characterization of lattice matched AlxIn1â^'xAs/InP and GayIn1â^'yAs/InP heterostructures by transmission electron microscopy and highâ€resolution xâ€ray diffraction. Journal of Applied Physics, 1995, 78, 2403-2410.	2.5	12

#	Article	IF	CITATIONS
253	Temperature dependence of the photoluminescence of Zn1â^'xCdxSe/ZnSe strainedâ€layer quantum wells. Applied Physics Letters, 1995, 67, 103-105.	3.3	24
254	Double period RHEED oscillations during MBE growth of GaAs and AlAs on the GaAs(110) surface. Surface Science, 1995, 331-333, 479-484.	1.9	6
255	Le laser bleu : état de l'art. Annales De Physique, 1995, 20, 743-750.	0.2	1
256	Interplay between Surface Stabilization, Growth Mode and Strain Relaxation during Molecular-Beam Epitaxy of Highly Mismatched III-V Semiconductor Layers. Europhysics Letters, 1994, 25, 663-668.	2.0	28
257	Growth mechanism of GaAs on (110) GaAs studied by high-energy electron diffraction and atomic force microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2574.	1.6	24
258	Tunable generation of nanometer-scale corrugations on high-index III-V semiconductor surfaces. Physical Review B, 1994, 49, 11053-11059.	3.2	8
259	Timeâ€resolved investigations of excitonic recombination in highly strained InAs/Al0.48In0.52As quantum wells. Journal of Applied Physics, 1994, 76, 618-620.	2.5	2
260	Strained InAs/Ga0.47In0.53As quantum-well heterostructures grown by molecular-beam epitaxy for long-wavelength laser applications. Solid-State Electronics, 1994, 37, 1311-1314.	1.4	7
261	Surface stoichiometry, epitaxial morphology and strain relaxation during molecular beam epitaxy of highly strained InAs/Ga0.47In0.53As heterostructures. Journal of Crystal Growth, 1994, 135, 97-112.	1.5	28
262	Surfactant-mediated molecular beam epitaxy of strained layer semiconductor heterostructures. Thin Solid Films, 1993, 231, 43-60.	1.8	81
263	Determination of the Sb composition profile in MBE-grown GaSb/GaAs structures by high-resolution X-ray diffractometry. Journal of Crystal Growth, 1993, 127, 503-507.	1.5	3
264	Virtual-surfactant epitaxy of InAs quantum wells. Journal of Crystal Growth, 1993, 127, 765-769.	1.5	17
265	Strained InAs/AlxGa0.48 â^' xIn0.52As heterostructures: a tunable quantum well materials system for light emission from the near-IR to the mid-IR. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 21, 288-292.	3.5	Ο
266	Low-density band-filling in strained InAs quantum wells. Applied Physics A: Materials Science and Processing, 1993, 56, 109-112.	2.3	4
267	Virtual-surfactant-induced wetting in strained-layer heteroepitaxy. Applied Physics A: Solids and Surfaces, 1993, 56, 91-94.	1.4	15
268	Overlayer strain: A key to directly tune the topography of highâ€index semiconductor surfaces. Applied Physics Letters, 1993, 63, 3300-3302.	3.3	13
269	Optical properties of InAs quantum wells emitting between 0.9 mu m and 2.5 mu m. Semiconductor Science and Technology, 1993, 8, S236-S239.	2.0	9
270	Surface stoichiometry and interface formation during molecular-beam epitaxy of strained InAs/AlxGa0.48â^`xIn0.52As heterostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1388.	1.6	4

#	Article	IF	CITATIONS
271	Analysis of epitaxial GaxIn1â^'xAs/InP and AlyIn1â^'yAs/InP interface region by high resolution xâ€ray diffraction. Applied Physics Letters, 1993, 62, 149-151.	3.3	18
272	Virtualâ€surfactant epitaxy of strained InAs/Al0.48In0.52As quantum wells. Applied Physics Letters, 1993, 62, 858-860.	3.3	28
273	Surfactant-Mediated MBE of Strained-Layer III-V Semiconductor Heterostructures. Solid State Phenomena, 1993, 32-33, 129-140.	0.3	1
274	Long-wavelength strained-layer InAs/GaInAs single-quantum-well laser grown by molecular beam epitaxy on InP substrate. Electronics Letters, 1993, 29, 1255.	1.0	13
275	Observation of InGaAs / Inaias Surface Quantum Wells by Photoreflectance and Photoluminescence Excitation Spectroscopies. Materials Research Society Symposia Proceedings, 1993, 326, 127.	0.1	1
276	Strained InAs/AlxGa0.48–xIn0.52As heterostructures: a tunable quantum well materials system for light emission from the near-IR to the mid-IR. European Materials Research Society Symposia Proceedings, 1993, 40, 288-292.	0.0	0
277	Photoluminescence of virtualâ€ s urfactant grown InAs/Al0.48In0.52As single quantum wells. Applied Physics Letters, 1992, 60, 2877-2879.	3.3	43
278	InAs/Ga0.47In0.53As quantum wells: A new IIIâ€V materials system for light emission in the midâ€infrared wavelength range. Applied Physics Letters, 1992, 61, 2808-2810.	3.3	29
279	Strained InAs single quantum wells embedded in a Ga0.47In0.53As matrix. Applied Physics Letters, 1992, 61, 846-848.	3.3	19
280	Structural properties and transport characteristics of pseudomorphic GaxIn1â^'xAs/AlyIn1â^'yAs modulationâ€doped heterostructures grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1992, 71, 1790-1797.	2.5	9
281	Liquid phase epitaxy and characterization of InAs1- x - ySb x P y on (100) InAs. Journal of Crystal Growth, 1992, 121, 463-472.	1.5	24
282	High-quality Al0.48In0.52As grown by molecular beam epitaxy at high InP-substrate temperature. Materials Letters, 1991, 11, 343-347.	2.6	3
283	Structural and optical properties of Al0.48In0.52As layers grown on InP by molecular beam epitaxy: Influence of the substrate temperature and of a buffer layer. Journal of Applied Physics, 1991, 70, 7362-7369.	2.5	49
284	Preparation et étude de diodes laser a GaInAsSb-GaAlAsSb fonctionnant en continu à 80K. Journal De Physique III, 1991, 1, 605-622.	0.3	0
285	Growth by liquid phase epitaxy and characterization of GaInAsSb and InAsSbP alloys for mid-infrared applications (2-3 um). , 1991, , .		10
286	Growth limitations by the miscibility gap in liquid phase epitaxy of Ga1â^'xInxAsySb1â^'y on GaSb. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 125-128.	3.5	26
287	GaInAsSb/GaSb pn photodiodes for detection to 2.4 μm. Electronics Letters, 1991, 27, 1237.	1.0	27
288	High temperature liquid phase epitaxy of (100) oriented GaInAsSb near the miscibility gap boundary. Journal of Crystal Growth, 1990, 104, 683-694.	1.5	40

#	Article	IF	CITATIONS
289	2.5 μm GalnAsSb latticeâ€matched to GaSb by liquid phase epitaxy. Journal of Applied Physics, 1990, 68, 5936-5938.	2.5	36
290	New III-V double-heterojunction laser emitting near 3.2μm. Electronics Letters, 1988, 24, 1542.	1.0	23
291	Characteristic temperature Toof Ga0.83In0.17As0.15Sb0.85/Al0.27Ga0.73As0.02Sb0.98 injection lasers. Electronics Letters, 1988, 24, 1076.	1.0	12
292	Control of the polarity of GaN epilayers using a Mg adsorption layer. , 0, , .		0
293	Correlations between growth mode and structural and optical properties of GaInNAs quantum wells grown by MBE. , 0, , .		Ο