Antonio Facchetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6307897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457, 679-686.	13.7	2,780
2	Ï€-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials, 2011, 23, 733-758.	3.2	2,071
3	Rylene and Related Diimides for Organic Electronics. Advanced Materials, 2011, 23, 268-284.	11.1	1,548
4	Metal oxides for optoelectronic applications. Nature Materials, 2016, 15, 383-396.	13.3	1,203
5	Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Materials, 2011, 10, 382-388.	13.3	1,093
6	nâ€Type Organic Semiconductors in Organic Electronics. Advanced Materials, 2010, 22, 3876-3892.	11.1	1,077
7	Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Advanced Materials, 2005, 17, 1705-1725.	11.1	975
8	Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport. Journal of the American Chemical Society, 2007, 129, 15259-15278.	6.6	960
9	Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7, 825-833.	15.6	887
10	Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews, 2014, 114, 8943-9021.	23.0	874
11	High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). Angewandte Chemie - International Edition, 2004, 43, 6363-6366.	7.2	808
12	Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nature Energy, 2018, 3, 720-731.	19.8	808
13	High- <i>k</i> Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chemical Reviews, 2010, 110, 205-239.	23.0	801
14	Semiconductors for organic transistors. Materials Today, 2007, 10, 28-37.	8.3	760
15	Polymer donor–polymer acceptor (all-polymer) solar cells. Materials Today, 2013, 16, 123-132.	8.3	645
16	<i>n</i> -Channel Semiconductor Materials Design for Organic Complementary Circuits. Accounts of Chemical Research, 2011, 44, 501-510.	7.6	643
17	Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nature Materials, 2017, 16, 841-848.	13.3	615
18	Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chemical Reviews, 2017, 117, 10291-10318.	23.0	575

#	Article	IF	CITATIONS
19	Molecular Selfâ€Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thinâ€Film Transistor Applications. Advanced Materials, 2009, 21, 1407-1433.	11.1	556
20	Naphthalenedicarboximide- vs Perylenedicarboximide-Based Copolymers. Synthesis and Semiconducting Properties in Bottom-Gate N-Channel Organic Transistors. Journal of the American Chemical Society, 2009, 131, 8-9.	6.6	540
21	Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Materials, 2010, 9, 496-503.	13.3	535
22	High- <i>k</i> Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chemical Reviews, 2018, 118, 5690-5754.	23.0	530
23	Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2, 378-384.	15.6	505
24	Role of Gallium Doping in Dramatically Lowering Amorphousâ€Oxide Processing Temperatures for Solutionâ€Derived Indium Zinc Oxide Thinâ€Film Transistors. Advanced Materials, 2010, 22, 1346-1350.	11.1	493
25	Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processable <i>n</i> -Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory. Journal of the American Chemical Society, 2009, 131, 5586-5608.	6.6	481
26	A Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule for Efficient Solution-Processed Solar Cells. Journal of the American Chemical Society, 2011, 133, 8142-8145.	6.6	474
27	Gate Dielectric Chemical Structureâ^'Organic Field-Effect Transistor Performance Correlations for Electron, Hole, and Ambipolar Organic Semiconductors. Journal of the American Chemical Society, 2006, 128, 12851-12869.	6.6	454
28	Allâ€Polymer Solar Cells: Recent Progress, Challenges, and Prospects. Angewandte Chemie - International Edition, 2019, 58, 4129-4142.	7.2	448
29	Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nature Materials, 2009, 8, 952-958.	13.3	416
30	Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors. Angewandte Chemie - International Edition, 2003, 42, 3900-3903.	7.2	402
31	Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics. Journal of the American Chemical Society, 2005, 127, 10388-10395.	6.6	401
32	Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. Journal of the American Chemical Society, 2012, 134, 18303-18317.	6.6	395
33	Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance. Science, 2007, 318, 76-80.	6.0	377
34	Easily Processable Phenyleneâ^'Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements. Journal of the American Chemical Society, 2003, 125, 9414-9423.	6.6	373
35	Organic Thin-Film Transistors Based on Carbonyl-Functionalized Quaterthiophenes:Â High Mobility N-Channel Semiconductors and Ambipolar Transport. Journal of the American Chemical Society, 2005, 127, 1348-1349.	6.6	365
36	Building Blocks for N-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (nTs;n= 2â^'6). Systematic Synthesis, Spectroscopy, Electrochemistry, and Solid-State Organization. Journal of the American Chemical Society, 2004, 126, 13480-13501.	6.6	362

#	Article	IF	CITATIONS
37	Unconventional Faceâ€On Texture and Exceptional Inâ€Plane Order of a High Mobility nâ€Type Polymer. Advanced Materials, 2010, 22, 4359-4363.	11.1	344
38	Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory. Journal of the American Chemical Society, 2008, 130, 7670-7685.	6.6	342
39	Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. Journal of the American Chemical Society, 2019, 141, 3274-3287.	6.6	336
40	High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Materials, 2006, 5, 893-900.	13.3	330
41	Dithienosiloleâ^' and Dibenzosiloleâ^'Thiophene Copolymers as Semiconductors for Organic Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 9034-9035.	6.6	323
42	Building Blocks for n-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (nT;n= 2â°6). Systematics of Thin Film Microstructure, Semiconductor Performance, and Modeling of Majority Charge Injection in Field-Effect Transistors. Journal of the American Chemical Society, 2004, 126, 13859-13874.	6.6	321
43	Slip-Stacked Perylenediimides as an Alternative Strategy for High Efficiency Nonfullerene Acceptors in Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 16345-16356.	6.6	320
44	n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility. Advanced Materials, 2003, 15, 33-38.	11.1	318
45	Influence of Aggregation on the Performance of Allâ€Polymer Solar Cells Containing Lowâ€Bandgap Naphthalenediimide Copolymers. Advanced Energy Materials, 2012, 2, 369-380.	10.2	316
46	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€Skin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	11.1	313
47	n-Channel Polymers by Design: Optimizing the Interplay of Solubilizing Substituents, Crystal Packing, and Field-Effect Transistor Characteristics in Polymeric Bithiophene-Imide Semiconductors. Journal of the American Chemical Society, 2008, 130, 9679-9694.	6.6	308
48	Fluorocarbon-Modified Organic Semiconductors:Â Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene- versus Fluoroarene-Thiophene Oligomer Thin-Film Properties. Journal of the American Chemical Society, 2006, 128, 5792-5801.	6.6	302
49	Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nature Communications, 2015, 6, 8394.	5.8	280
50	Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules, 2011, 44, 5246-5255.	2.2	278
51	All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. Journal of the American Chemical Society, 2016, 138, 1240-1251.	6.6	276
52	Tuning the Semiconducting Properties of Sexithiophene byα,ω-Substitution—α,I‰-Diperfluorohexylsexithiophene: The First n-Type Sexithiophene for Thin-Film Transistors. Angewandte Chemie - International Edition, 2000, 39, 4547-4551.	7.2	273
53	The journey of conducting polymers from discovery to application. Nature Materials, 2020, 19, 922-928.	13.3	272
54	Efficient Squaraine-Based Solution Processable Bulk-Heterojunction Solar Cells. Journal of the American Chemical Society, 2008, 130, 17640-17641.	6.6	271

#	Article	IF	CITATIONS
55	Air-Stable, Solution-Processable <i>n</i> -Channel and Ambipolar Semiconductors for Thin-Film Transistors Based on the Indenofluorenebis(dicyanovinylene) Core. Journal of the American Chemical Society, 2008, 130, 8580-8581.	6.6	259
56	Ultralarge Hyperpolarizability Twisted π-Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies. Journal of the American Chemical Society, 2007, 129, 3267-3286.	6.6	258
57	From The Cover: Â-Â molecular dielectric multilayers for low-voltage organic thin-film transistors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4678-4682.	3.3	257
58	High Electron Mobility in Vacuum and Ambient for PDIF-CN ₂ Single-Crystal Transistors. Journal of the American Chemical Society, 2009, 131, 2462-2463.	6.6	257
59	Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–Property–Device Performance Correlations and Comparison to Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Analogues. Journal of the American Chemical Society, 2012, 134, 18427-18439.	6.6	257
60	Band‣ike Electron Transport in Organic Transistors and Implication of the Molecular Structure for Performance Optimization. Advanced Materials, 2012, 24, 503-508.	11.1	255
61	Cyanonaphthalene Diimide Semiconductors for Air-Stable, Flexible, and Optically Transparent n-Channel Field-Effect Transistors. Chemistry of Materials, 2007, 19, 2703-2705.	3.2	243
62	Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 4414-4423.	6.6	243
63	Heavily n-Dopable ï€-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society, 2015, 137, 4956-4959.	6.6	242
64	High-Performance Solution-Processed Amorphous Zincâ^'Indiumâ^'Tin Oxide Thin-Film Transistors. Journal of the American Chemical Society, 2010, 132, 10352-10364.	6.6	235
65	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 13685-13697.	6.6	232
66	Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structureâ^'Property Correlations, Charge Carrier Polarity, and Device Stability. Journal of the American Chemical Society, 2011, 133, 1405-1418.	6.6	231
67	Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017, 16, 918-924.	13.3	229
68	High-Performance n-Type Polymer Semiconductors: Applications, Recent Development, and Challenges. CheM, 2020, 6, 1310-1326.	5.8	229
69	Highâ€Efficiency Allâ€Polymer Solar Cells Based on a Pair of Crystalline Lowâ€Bandgap Polymers. Advanced Materials, 2014, 26, 7224-7230.	11.1	228
70	Morphologyâ€Performance Relationships in Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1300785.	10.2	227
71	The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer. Journal of the American Chemical Society, 2014, 136, 4245-4256.	6.6	226
72	High-Mobility Ambipolar Transport in Organic Light-Emitting Transistors. Advanced Materials, 2006, 18, 1416-1420.	11.1	220

#	Article	IF	CITATIONS
73	Combining Electron-Neutral Building Blocks with Intramolecular "Conformational Locks―Affords Stable, High-Mobility P- and N-Channel Polymer Semiconductors. Journal of the American Chemical Society, 2012, 134, 10966-10973.	6.6	220
74	A Circuits and Systems Perspective of Organic/Printed Electronics: Review, Challenges, and Contemporary and Emerging Design Approaches. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 7-26.	2.7	214
75	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. Journal of the American Chemical Society, 2020, 142, 14532-14547.	6.6	214
76	Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry. Nano Letters, 2008, 8, 997-1004.	4.5	213
77	Allâ€Printed Flexible Organic Transistors Enabled by Surface Tensionâ€Guided Blade Coating. Advanced Materials, 2014, 26, 5722-5727.	11.1	204
78	Effects of Arylene Diimide Thin Film Growth Conditions on n hannel OFET Performance. Advanced Functional Materials, 2008, 18, 1329-1339.	7.8	198
79	Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy and Environmental Science, 2012, 5, 8457.	15.6	197
80	Semiconducting Polymers Prepared by Direct Arylation Polycondensation. Angewandte Chemie - International Edition, 2012, 51, 3520-3523.	7.2	197
81	Anthracenedicarboximides as Air-Stable N-Channel Semiconductors for Thin-Film Transistors with Remarkable Current Onâ^'Off Ratios. Journal of the American Chemical Society, 2007, 129, 13362-13363.	6.6	196
82	Novel Heterocycle-Based Two-Photon Absorbing Dyes. Organic Letters, 2002, 4, 1495-1498.	2.4	195
83	Enhanced Efficiency of Hotâ€Cast Largeâ€Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials, 2017, 7, 1601660.	10.2	191
84	Marked Alkyl- vs Alkenyl-Substitutent Effects on Squaraine Dye Solid-State Structure, Carrier Mobility, and Bulk-Heterojunction Solar Cell Efficiency. Journal of the American Chemical Society, 2010, 132, 4074-4075.	6.6	186
85	Dialkoxybithiazole: A New Building Block for Head-to-Head Polymer Semiconductors. Journal of the American Chemical Society, 2013, 135, 1986-1996.	6.6	184
86	High Performance Solution-Processed Indium Oxide Thin-Film Transistors. Journal of the American Chemical Society, 2008, 130, 12580-12581.	6.6	182
87	Remarkable Enhancement of Hole Transport in Topâ€Gated Nâ€Type Polymer Fieldâ€Effect Transistors by a Highâ€k Dielectric for Ambipolar Electronic Circuits. Advanced Materials, 2012, 24, 5433-5439.	11.1	176
88	Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3217-3222.	3.3	175
89	Oxygen "Getter―Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X = Ga, Sc, Y, La) Transistors. Journal of the American Chemical Society, 2013, 135, 10729-10741.	6.6	174
90	Flexible and stretchable metalÂoxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nature Communications, 2020, 11, 2405.	5.8	174

#	Article	IF	CITATIONS
91	Very Low Degree of Energetic Disorder as the Origin of High Mobility in an <i>n</i> hannel Polymer Semiconductor. Advanced Functional Materials, 2011, 21, 3371-3381.	7.8	169
92	High Electron Mobility in Solution-Cast and Vapor-Deposited Phenacylâ^'Quaterthiophene-Based Field-Effect Transistors:Â Toward N-Type Polythiophenes. Journal of the American Chemical Society, 2005, 127, 13476-13477.	6.6	166
93	A Chemically Doped Naphthalenediimideâ€Bithiazole Polymer for nâ€Type Organic Thermoelectrics. Advanced Materials, 2018, 30, e1801898.	11.1	165
94	A Distinctive Example of the Cooperative Interplay of Structure and Environment in Tuning of Intramolecular Charge Transfer in Second-Order Nonlinear Optical Chromophores. Chemistry - A European Journal, 2003, 9, 1991-2007.	1.7	161
95	Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 2242-2248.	11.1	158
96	Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Materials Today, 2018, 21, 377-390.	8.3	158
97	Dopantâ€Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600502.	10.2	156
98	Tin-Free Direct C–H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. Journal of the American Chemical Society, 2016, 138, 15699-15709.	6.6	156
99	Solution-Processable Low-Molecular Weight Extended Arylacetylenes: Versatile p-Type Semiconductors for Field-Effect Transistors and Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2010, 132, 6108-6123.	6.6	155
100	Processing Strategies for an Organic Photovoltaic Module with over 10% Efficiency. Joule, 2020, 4, 189-206.	11.7	154
101	Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 16632-16643.	6.6	154
102	Synthesis and Characterization of Diperfluorooctyl-Substituted Phenyleneâ^'Thiophene Oligomers as n-Type Semiconductors. Molecular Structureâ''Film Microstructureâ''Mobility Relationships, Organic Field-Effect Transistors, and Transistor Nonvolatile Memory Elements. Chemistry of Materials, 2004, 16, 4715-4727.	3.2	153
103	Transition metal-catalysed molecular n-doping of organic semiconductors. Nature, 2021, 599, 67-73.	13.7	152
104	Layer-by-Layer Self-Assembled Pyrrole-Based Donorâ^'Acceptor Chromophores as Electro-Optic Materials. Chemistry of Materials, 2003, 15, 1064-1072.	3.2	150
105	Low Operating Voltage Single ZnO Nanowire Field-Effect Transistors Enabled by Self-Assembled Organic Gate Nanodielectrics. Nano Letters, 2005, 5, 2281-2286.	4.5	150
106	Charge Injection Engineering of Ambipolar Field-Effect Transistors for High-Performance Organic Complementary Circuits. ACS Applied Materials & Interfaces, 2011, 3, 3205-3214.	4.0	150
107	Thiazole Imideâ€Based Allâ€Acceptor Homopolymer: Achieving Highâ€Performance Unipolar Electron Transport in Organic Thinâ€Film Transistors. Advanced Materials, 2018, 30, 1705745.	11.1	150
108	Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells. Advanced Materials, 2014, 26, 5831-5838.	11.1	149

#	Article	IF	CITATIONS
109	Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 5891.	6.7	146
110	Bulk Electron Transport and Charge Injection in a High Mobility nâ€Type Semiconducting Polymer. Advanced Materials, 2010, 22, 2799-2803.	11.1	145
111	Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.	7.8	144
112	High Electron Mobility and Ambient Stability in Solutionâ€Processed Peryleneâ€Based Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 1573-1576.	11.1	139
113	Organic n-Channel Field-Effect Transistors Based on Arylenediimide-Thiophene Derivatives. Journal of the American Chemical Society, 2010, 132, 8440-8452.	6.6	134
114	Competitive Absorption and Inefficient Exciton Harvesting: Lessons Learned from Bulk Heterojunction Organic Photovoltaics Utilizing the Polymer Acceptor P(NDI2ODâ€₹2). Advanced Functional Materials, 2014, 24, 6989-6998.	7.8	134
115	Air Stable Cross-Linked Cytop Ultrathin Gate Dielectric for High Yield Low-Voltage Top-Gate Organic Field-Effect Transistors. Chemistry of Materials, 2010, 22, 1559-1566.	3.2	133
116	Exceptional Molecular Hyperpolarizabilities in Twisted π-Electron System Chromophores. Angewandte Chemie - International Edition, 2005, 44, 7922-7925.	7.2	131
117	Twisted π-System Chromophores for All-Optical Switching. Journal of the American Chemical Society, 2011, 133, 6675-6680.	6.6	128
118	Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8341-E8348.	3.3	126
119	High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators. Applied Physics Letters, 2006, 88, 082104.	1.5	125
120	Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. Journal of the American Chemical Society, 2021, 143, 6123-6139.	6.6	125
121	Very large electro-optic responses in H-bonded heteroaromatic films grown by physical vapour deposition. Nature Materials, 2004, 3, 910-917.	13.3	124
122	Dithienocoronenediimideâ€Based Copolymers as Novel Ambipolar Semiconductors for Organic Thinâ€Film Transistors. Advanced Materials, 2012, 24, 3678-3684.	11.1	123
123	Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activityElectronic supplementary information (ESI) available: Experimental section. See http://www.rsc.org/suppdata/cc/b3/b305995b/. Chemical Communications, 2003, , 2144.	2.2	122
124	A Narrowâ€Bandgap nâ€Type Polymer Semiconductor Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2019, 31, e1905161.	11.1	121
125	Combustion Synthesized Zinc Oxide Electronâ€Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900265.	7.8	121
126	Organic Nanodielectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logic Gates. Journal of the American Chemical Society, 2005, 127, 13808-13809.	6.6	120

#	Article	IF	CITATIONS
127	Gate Dielectric Microstructural Control of Pentacene Film Growth Mode and Fieldâ€Effect Transistor Performance. Advanced Materials, 2007, 19, 2561-2566.	11.1	120
128	Printable Cross-Linked Polymer Blend Dielectrics. Design Strategies, Synthesis, Microstructures, and Electrical Properties, with Organic Field-Effect Transistors as Testbeds. Journal of the American Chemical Society, 2008, 130, 6867-6878.	6.6	120
129	Exploratory Combustion Synthesis: Amorphous Indium Yttrium Oxide for Thin-Film Transistors. Journal of the American Chemical Society, 2012, 134, 9593-9596.	6.6	120
130	Remarkable Order of a High-Performance Polymer. Nano Letters, 2013, 13, 2522-2527.	4.5	120
131	A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry, 2015, 17, 365-372.	4.6	120
132	High Electron Mobility in Air for <i>N,N</i> ′â€l <i>H</i> ,1 <i>H</i> â€Perfluorobutyldicyanoperylene Carboxydiâ€imide Solutionâ€Crystallized Thinâ€Film Transistors on Hydrophobic Surfaces. Advanced Materials, 2011, 23, 3681-3685.	11.1	119
133	Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors. Journal of Materials Chemistry C, 2013, 1, 6532.	2.7	118
134	Solution Processed Topâ€Gate <i>n</i> â€Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions. Advanced Materials, 2008, 20, 3393-3398.	11.1	117
135	Ultraâ€Flexible, "Invisible―Thinâ€Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends. Advanced Materials, 2015, 27, 2390-2399.	11.1	116
136	Flexible Low-Voltage Organic Thin-Film Transistors Enabled by Low-Temperature, Ambient Solution-Processable Inorganic/Organic Hybrid Gate Dielectrics. Journal of the American Chemical Society, 2010, 132, 17426-17434.	6.6	112
137	Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy and Environmental Science, 2016, 9, 763-786.	15.6	112
138	Supported Metallocene Catalysis for In Situ Synthesis of High Energy Density Metal Oxide Nanocomposites. Journal of the American Chemical Society, 2007, 129, 766-767.	6.6	111
139	Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10066-E10073.	3.3	110
140	Modeling Electron and Hole Transport in Fluoroareneâ€Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties. Advanced Functional Materials, 2008, 18, 332-340.	7.8	109
141	From Monolayer to Multilayer Nâ€Channel Polymeric Fieldâ€Effect Transistors with Precise Conformational Order. Advanced Materials, 2012, 24, 951-956.	11.1	109
142	Solution-Deposited Organic–Inorganic Hybrid Multilayer Gate Dielectrics. Design, Synthesis, Microstructures, and Electrical Properties with Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 10239-10250.	6.6	108
143	UV–Ozone Interfacial Modification in Organic Transistors for Highâ€Sensitivity NO ₂ Detection. Advanced Materials, 2017, 29, 1701706.	11.1	106
144	Functionalized anthradithiophenes for organic field-effect transistors. Journal of Materials Chemistry, 2008, 18, 1029.	6.7	105

#	Article	IF	CITATIONS
145	High-Performance n-Channel Carbonyl-Functionalized Quaterthiophene Semiconductors:  Thin-Film Transistor Response and Majority Carrier Type Inversion via Simple Chemical Protection/Deprotection. Chemistry of Materials, 2007, 19, 4864-4881.	3.2	104
146	Click-chemistry approaches to ï€-conjugated polymers for organic electronics applications. Chemical Science, 2016, 7, 6298-6308.	3.7	104
147	Aziniumâ^'(Ï€-Bridge)â^'Pyrrole NLO-Phores:Â Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties#. Chemistry of Materials, 2002, 14, 4996-5005.	3.2	102
148	High speeds complementary integrated circuits fabricated with allâ€printed polymeric semiconductors. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 62-67.	2.4	102
149	Highâ€Performance Flexible Transparent Thinâ€Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel. Advanced Materials, 2010, 22, 2333-2337.	11.1	101
150	A "zig-zag―naphthodithiophene core for increased efficiency in solution-processed small molecule solar cells. Chemical Communications, 2012, 48, 8511.	2.2	101
151	Solutionâ€Processed Allâ€Oxide Transparent Highâ€Performance Transistors Fabricated by Sprayâ€Combustion Synthesis. Advanced Electronic Materials, 2016, 2, 1500427.	2.6	101
152	Highâ€Performance Solutionâ€Deposited nâ€Channel Organic Transistors and their Complementary Circuits. Advanced Materials, 2007, 19, 4028-4032.	11.1	100
153	N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability. Journal of Materials Chemistry A, 2016, 4, 2419-2426.	5.2	100
154	All-Amorphous-Oxide Transparent, Flexible Thin-Film Transistors. Efficacy of Bilayer Gate Dielectrics. Journal of the American Chemical Society, 2010, 132, 11934-11942.	6.6	98
155	Fluorinated Copper Phthalocyanine Nanowires for Enhancing Interfacial Electron Transport in Organic Solar Cells. Nano Letters, 2012, 12, 6315-6321.	4.5	97
156	Synthesis and Characterization of Electron-Deficient and Highly Soluble (Bis)Indenofluorene Building Blocks for n-Type Semiconducting Polymers. Organic Letters, 2008, 10, 1385-1388.	2.4	96
157	Conjugated anthracene derivatives as donor materials for bulk heterojunction solar cells: olefinic versus acetylenic spacers. Chemical Communications, 2009, , 1380.	2.2	96
158	Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy and Environmental Science, 2013, 6, 3407.	15.6	96
159	Ultrahigh Mobility in Solutionâ€Processed Solidâ€State Electrolyteâ€Gated Transistors. Advanced Materials, 2017, 29, 1605685.	11.1	95
160	A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Science Advances, 2019, 5, eaax8801.	4.7	95
161	Variable Temperature Mobility Analysis of nâ€Channel, pâ€Channel, and Ambipolar Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2010, 20, 50-58.	7.8	93
162	Imide-Functionalized Thiazole-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, Charge Carrier Polarity, and Thin-Film Transistor Performance. Chemistry of Materials, 2018, 30, 7988-8001.	3.2	92

#	Article	IF	CITATIONS
163	Facile, Regioselective Synthesis of Highly Solvatochromic Thiophene-SpacedN-Alkylpyridinium Dicyanomethanides for Second-Harmonic Generation. Journal of Organic Chemistry, 1997, 62, 5755-5765.	1.7	91
164	One-pot [1+1+1] synthesis of dithieno[2,3-b:3′,2′-d]thiophene (DTT) and their functionalized derivatives for organic thin-film transistors. Chemical Communications, 2009, , 1846.	2.2	90
165	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. Journal of the American Chemical Society, 2015, 137, 12565-12579.	6.6	89
166	Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes. Advanced Materials, 2019, 31, e1903239.	11.1	89
167	High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent Thin-Film Transistors and Active Matrix Organic Light-Emitting Diode Displays. ACS Nano, 2009, 3, 3383-3390.	7.3	88
168	Made to order. Nature Materials, 2013, 12, 598-600.	13.3	88
169	In-Situ Probe of Gate Dielectric-Semiconductor Interfacial Order in Organic Transistors: Origin and Control of Large Performance Sensitivities. Journal of the American Chemical Society, 2012, 134, 11726-11733.	6.6	86
170	Highly stretchable organic electrochemical transistors with strain-resistant performance. Nature Materials, 2022, 21, 564-571.	13.3	86
171	Self-Propagating Molecular Assemblies as Interlayers for Efficient Inverted Bulk-Heterojunction Solar Cells. Journal of the American Chemical Society, 2010, 132, 12528-12530.	6.6	85
172	Self-Assembled Electrooptic Thin Films with Remarkably Blue-Shifted Optical Absorption Based on an X-Shaped Chromophore. Journal of the American Chemical Society, 2004, 126, 15974-15975.	6.6	84
173	Influence of Thiol Selfâ€Assembled Monolayer Processing on Bottomâ€Contact Thinâ€Film Transistors Based on nâ€Type Organic Semiconductors. Advanced Functional Materials, 2012, 22, 1856-1869.	7.8	84
174	Noncovalent Se···O Conformational Locks for Constructing Highâ€Performing Optoelectronic Conjugated Polymers. Advanced Materials, 2017, 29, 1606025.	11.1	84
175	Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nature Communications, 2019, 10, 5502.	5.8	84
176	Alkoxyâ€Functionalized Thienylâ€Vinylene Polymers for Fieldâ€Effect Transistors and Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 2782-2793.	7.8	83
177	Thiophene–Diazine Molecular Semiconductors: Synthesis, Structural, Electrochemical, Optical, and Electronic Structural Properties; Implementation in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2009, 15, 5023-5039.	1.7	82
178	Versatile α,ï‰â€Disubstituted Tetrathienoacene Semiconductors for High Performance Organic Thinâ€Film Transistors. Advanced Functional Materials, 2012, 22, 48-60.	7.8	82
179	Breath figure–derived porous semiconducting films for organic electronics. Science Advances, 2020, 6, eaaz1042.	4.7	81
180	BODIPY–Thiophene Copolymers as <i>p</i> â€Channel Semiconductors for Organic Thinâ€Film Transistors. Advanced Materials, 2013, 25, 4327-4334.	11.1	80

#	Article	IF	CITATIONS
181	Heterocycles as donor and acceptor units in push-pull conjugated molecules. Part 1. Journal of Physical Organic Chemistry, 1997, 10, 514-524.	0.9	78
182	Fluorinating Ï€â€Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2000635.	10.2	78
183	Ambipolar all-polymer bulk heterojunction field-effect transistors. Journal of Materials Chemistry, 2010, 20, 1317-1321.	6.7	77
184	Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits. ACS Applied Materials & Interfaces, 2012, 4, 6176-6184.	4.0	77
185	Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport. Advanced Functional Materials, 2016, 26, 6179-6187.	7.8	77
186	Assembly of Crystalline Halogen-Bonded Materials by Physical Vapor Deposition. Journal of the American Chemical Society, 2008, 130, 8162-8163.	6.6	76
187	Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. Nature Materials, 2012, 11, 788-794.	13.3	76
188	Flexible Inorganic/Organic Hybrid Thinâ€Film Transistors Using Allâ€Transparent Component Materials. Advanced Materials, 2007, 19, 3252-3256.	11.1	75
189	Synergistic Approach to High-Performance Oxide Thin Film Transistors Using a Bilayer Channel Architecture. ACS Applied Materials & Interfaces, 2013, 5, 7983-7988.	4.0	75
190	Electrical stability of inkjet-patterned organic complementary inverters measured in ambient conditions. Applied Physics Letters, 2009, 94, 233307.	1.5	74
191	Orientation-Dependent Electronic Structures and Charge Transport Mechanisms in Ultrathin Polymeric n-Channel Field-Effect Transistors. ACS Applied Materials & Interfaces, 2013, 5, 4417-4422.	4.0	74
192	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption. ACS Energy Letters, 2021, 6, 728-738.	8.8	74
193	Two-photon pumped frequency-upconversion lasing of a new blue-green dye material. Optics Communications, 1997, 140, 49-52.	1.0	73
194	Strategies for Electrooptic Film Fabrication. Influence of Pyrroleâ^'Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response. Journal of the American Chemical Society, 2006, 128, 2142-2153.	6.6	73
195	Perfluoroalkyl-Functionalized Thiazole–Thiophene Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting Transistors. Chemistry of Materials, 2014, 26, 6542-6556.	3.2	73
196	High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment. Nanotechnology, 2007, 18, 155201.	1.3	71
197	Ambipolar Organic Fieldâ€Effect Transistors from Crossâ€Conjugated Aromatic Quaterthiophenes; Comparisons with Quinoidal Parent Materials. Advanced Functional Materials, 2009, 19, 386-394.	7.8	71
198	Corrugated Heterojunction Metalâ€Oxide Thinâ€Film Transistors with High Electron Mobility via Vertical Interface Manipulation. Advanced Materials, 2018, 30, e1804120.	11.1	71

#	Article	IF	CITATIONS
199	Ultraflexible Polymer Solar Cells Using Amorphous Zincâ^'Indiumâ^'Tin Oxide Transparent Electrodes. Advanced Materials, 2014, 26, 1098-1104.	11.1	70
200	Ambient-Processable High Capacitance Hafnia-Organic Self-Assembled Nanodielectrics. Journal of the American Chemical Society, 2013, 135, 8926-8939.	6.6	69
201	Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits. Organic Electronics, 2015, 20, 132-141.	1.4	68
202	Monolayer to Multilayer Nanostructural Growth Transition in N-Type Oligothiophenes on Au(111) and Implications for Organic Field-Effect Transistor Performance. Nano Letters, 2006, 6, 2447-2455.	4.5	67
203	Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. Chemistry of Materials, 2017, 29, 4432-4444.	3.2	67
204	Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Organic Electronics, 2009, 10, 1511-1520.	1.4	66
205	Reduced Contact Resistance in Inkjet Printed High-Performance Amorphous Indium Gallium Zinc Oxide Transistors. ACS Applied Materials & Interfaces, 2012, 4, 1614-1619.	4.0	66
206	Rational Design of Ambipolar Organic Semiconductors: Is Core Planarity Central to Ambipolarity in Thiophene–Naphthalene Semiconductors?. Chemistry - A European Journal, 2012, 18, 532-543.	1.7	66
207	Solution-Processable BODIPY-Based Small Molecules for Semiconducting Microfibers in Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 14077-14087.	4.0	66
208	Vapor Phase Self-Assembly of Molecular Gate Dielectrics for Thin Film Transistors. Journal of the American Chemical Society, 2008, 130, 7528-7529.	6.6	65
209	Functionalized dithieno[2,3-b:3′,2′-d]thiophenes (DTTs) for organic thin-film transistors. Organic Electronics, 2010, 11, 801-813.	1.4	65
210	Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimideâ€Based Coâ€Polymers with Different Oligothiophene Donor Units. Advanced Functional Materials, 2014, 24, 1151-1162.	7.8	65
211	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy and Environmental Science, 2022, 15, 645-659.	15.6	65
212	Charge Transport Orthogonality in Allâ€Polymer Blend Transistors, Diodes, and Solar Cells. Advanced Energy Materials, 2014, 4, 1301409.	10.2	64
213	Delayed Ignition of Autocatalytic Combustion Precursors: Low-Temperature Nanomaterial Binder Approach to Electronically Functional Oxide Films. Journal of the American Chemical Society, 2012, 134, 11583-11593.	6.6	63
214	Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Organic Electronics, 2013, 14, 1407-1418.	1.4	63
215	Naphthalenediimide Polymers with Finely Tuned Inâ€Chain Ï€â€Conjugation: Electronic Structure, Film Microstructure, and Charge Transport Properties. Advanced Materials, 2016, 28, 9169-9174.	11.1	63
216	Low-Temperature Solution-Processed Amorphous Indium Tin Oxide Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 10826-10827.	6.6	62

#	Article	IF	CITATIONS
217	Probing the Surface Glass Transition Temperature of Polymer Films via Organic Semiconductor Growth Mode, Microstructure, and Thin-Film Transistor Response. Journal of the American Chemical Society, 2009, 131, 9122-9132.	6.6	62
218	3,6-Dithiophen-2-yl-diketopyrrolo[3,2-b]pyrrole (isoDPPT) as an Acceptor Building Block for Organic Opto-Electronics. Macromolecules, 2013, 46, 3895-3906.	2.2	62
219	Solutionâ€Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambientâ€6table nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606761.	7.8	62
220	Charge Conduction and Breakdown Mechanisms in Self-Assembled Nanodielectrics. Journal of the American Chemical Society, 2009, 131, 7158-7168.	6.6	61
221	Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. Journal of the American Chemical Society, 2016, 138, 7067-7074.	6.6	61
222	Porous Semiconducting Polymers Enable Highâ€Performance Electrochemical Transistors. Advanced Materials, 2021, 33, e2007041.	11.1	61
223	Phenacyl–Thiophene and Quinone Semiconductors Designed for Solution Processability and Airâ€5tability in High Mobility nâ€Channel Fieldâ€Effect Transistors. Chemistry - A European Journal, 2010, 16, 1911-1928.	1.7	60
224	High Performance and Stable N-Channel Organic Field-Effect Transistors by Patterned Solvent-Vapor Annealing. ACS Applied Materials & Interfaces, 2013, 5, 10745-10752.	4.0	60
225	Micro″Nanostructured Highly Crystalline Organic Semiconductor Films for Surfaceâ€Enhanced Raman Spectroscopy Applications. Advanced Functional Materials, 2015, 25, 5669-5676.	7.8	60
226	Ultra-High-Response, Multiply Twisted Electro-optic Chromophores: Influence of π-System Elongation and Interplanar Torsion on Hyperpolarizability. Journal of the American Chemical Society, 2015, 137, 12521-12538.	6.6	60
227	Novel soluble pentacene and anthradithiophene derivatives for organic thin-film transistors. Organic Electronics, 2010, 11, 1363-1375.	1.4	58
228	From organic single crystals to solution processed thin-films: Charge transport and trapping with varying degree of order. Journal of Applied Physics, 2013, 113, .	1.1	58
229	Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Applied Materials & amp; Interfaces, 2015, 7, 2149-2152.	4.0	58
230	Bithiophenesulfonamide Building Block for π-Conjugated Donor–Acceptor Semiconductors. Journal of the American Chemical Society, 2016, 138, 6944-6947.	6.6	58
231	Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. ACS Energy Letters, 2020, 5, 1780-1787.	8.8	58
232	Vapor Phase Self-Assembly of Electrooptic Thin Films via Triple Hydrogen Bonds. Journal of the American Chemical Society, 2003, 125, 11496-11497.	6.6	57
233	Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements. Applied Physics Letters, 2008, 92, 022104.	1.5	57
234	Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. Journal of Materials Chemistry A, 2015, 3, 8045-8054.	5.2	57

#	Article	IF	CITATIONS
235	Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in Allâ€Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1702173.	10.2	57
236	Indolic Squaraines as Two-Photon Absorbing Dyes in the Visible Region: X-ray Structure, Electrochemical, and Nonlinear Optical Characterization. Chemistry of Materials, 2008, 20, 3242-3244.	3.2	56
237	Low-Dimensional Arylacetylenes for Solution-Processable Organic Field-Effect Transistors. Chemistry of Materials, 2009, 21, 2592-2594.	3.2	56
238	The unusual electronic structure of ambipolar dicyanovinyl-substituted diketopyrrolopyrrole derivatives. Journal of Materials Chemistry C, 2014, 2, 6376.	2.7	55
239	High Electron Mobility in [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene-Based Field-Effect Transistors: Toward n-Type BTBTs. Chemistry of Materials, 2019, 31, 5254-5263.	3.2	55
240	Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2020, 2, 100042.	10.1	55
241	Self-Assembly from the Gas-Phase: Design and Implementation of Small-Molecule Chromophore Precursors with Large Nonlinear Optical Responses. Journal of the American Chemical Society, 2009, 131, 12595-12612.	6.6	54
242	Complementary integrated circuits on plastic foil using inkjet printed n- and p-type organic semiconductors: Fabrication, characterization, and circuit analysis. Organic Electronics, 2012, 13, 1686-1692.	1.4	54
243	Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions. Chemistry of Materials, 2014, 26, 5020-5027.	3.2	54
244	1â^•f noise of SnO2 nanowire transistors. Applied Physics Letters, 2008, 92, 243120.	1.5	53
245	Structureâ~'Performance Correlations in Vapor Phase Deposited Self-Assembled Nanodielectrics for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 11080-11090.	6.6	53
246	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent Sulfur··À·Oxygen Interactions. Macromolecules, 2018, 51, 3874-3885.	2.2	53
247	Transport Property and Charge Trap Comparison for N-Channel Perylene Diimide Transistors with Different Air-Stability. Journal of Physical Chemistry C, 2010, 114, 20387-20393.	1.5	51
248	Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization. Journal of Materials Chemistry, 2012, 22, 4459-4472.	6.7	51
249	On the Molecular Origin of Charge Separation at the Donor–Acceptor Interface. Advanced Energy Materials, 2018, 8, 1702232.	10.2	51
250	Hyperbolic Dispersion Arising from Anisotropic Excitons in Two-Dimensional Perovskites. Physical Review Letters, 2018, 121, 127401.	2.9	51
251	Metal Chelation Aptitudes of Bis(o-azaheteroaryl)methanes As Tuned by Heterocycle Charge Demands1. Journal of Organic Chemistry, 2002, 67, 5753-5772.	1.7	50
252	Influence of Substrate Surface Chemistry on the Performance of Top-Gate Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 9968-9971.	6.6	50

#	Article	IF	CITATIONS
253	New Semiconductors Based on 2,2′-Ethyne-1,2-diylbis[3-(alk-1-yn-1-yl)thiophene] for Organic Opto-Electronics. Chemistry of Materials, 2012, 24, 2929-2942.	3.2	50
254	Dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6(1H,5H)-dione based conjugated polymers for ambipolar organic thin-film transistors. Chemical Communications, 2013, 49, 484-486.	2.2	48
255	Substantial photovoltaic response and morphology tuning in benzo[1,2-b:6,5-b′]dithiophene (bBDT) molecular donors. Chemical Communications, 2014, 50, 4099.	2.2	48
256	Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. Polymer Chemistry, 2014, 5, 3404-3411.	1.9	48
257	Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells. Journal of Materials Chemistry C, 2015, 3, 8932-8941.	2.7	48
258	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chemistry of Materials, 2016, 28, 8580-8590.	3.2	48
259	Novel coordinating motifs for lanthanide(iii) ions based on 5-(2-pyridyl)tetrazole and 5-(2-pyridyl-1-oxide)tetrazole. Potential new contrast agents. Chemical Communications, 2004, , 1770-1771.	2.2	47
260	Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries. Nano Energy, 2019, 64, 103936.	8.2	47
261	Quantum Chemical Analysis of Electronic Structure and n- and p-Type Charge Transport in Perfluoroarene-Modified Oligothiophene Semiconductors. Journal of Physical Chemistry B, 2006, 110, 24361-24370.	1.2	46
262	Molecularâ€Shapeâ€Controlled Photovoltaic Performance Probed via Soluble ï€â€Conjugated Arylacetylenic Semiconductors. Advanced Materials, 2011, 23, 3827-3831.	11.1	46
263	Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. Journal of Materials Chemistry, 2012, 22, 21138.	6.7	46
264	Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent. Journal of Materials Chemistry A, 2016, 4, 2530-2536.	5.2	46
265	Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers. Journal of the American Chemical Society, 2017, 139, 14356-14359.	6.6	46
266	Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules, 2018, 51, 9140-9155.	2.2	46
267	Systematically Controlling Acceptor Fluorination Optimizes Hierarchical Morphology, Vertical Phase Separation, and Efficiency in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	46
268	Novel Semiconductors Based on Functionalized Benzo[<i>d</i> , <i>d</i> â€2]thieno[3,2- <i>b</i> ;4,5- <i>b</i> â€2]dithiophenes and the Effects of Thin Film Growth Conditions on Organic Field Effect Transistor Performance. Chemistry of Materials, 2010, 22, 5031-5041.	3.2	45
269	Reversible Soft-Contact Lamination and Delamination for Non-Invasive Fabrication and Characterization of Bulk-Heterojunction and Bilayer Organic Solar Cells. Chemistry of Materials, 2010, 22, 4931-4938.	3.2	45
270	Solution-processed ambipolar vertical organic field effect transistor. Applied Physics Letters, 2012, 100, 263306.	1.5	45

#	Article	IF	CITATIONS
271	Tailoring the Molecular Structure to Suppress Extrinsic Disorder in Organic Transistors. Advanced Materials, 2014, 26, 1254-1260.	11.1	45
272	Diperfluorophenyl Fused Thiophene Semiconductors for nâ€Type Organic Thin Film Transistors (OTFTs). Advanced Electronic Materials, 2015, 1, 1500098.	2.6	45
273	A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy and Environmental Science, 2016, 9, 2595-2602.	15.6	45
274	Intramolecular Locked Dithioalkylbithiopheneâ€Based Semiconductors for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702414.	11.1	45
275	Semiconducting Polymeric Materials. Polymer Reviews, 2008, 48, 423-431.	5.3	44
276	Efficient Tin-Free Route to a Donor–Acceptor Semiconducting Copolymer with Variable Molecular Weights. Macromolecules, 2014, 47, 3845-3851.	2.2	44
277	Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy. Journal of the American Chemical Society, 2018, 140, 11402-11407.	6.6	44
278	Effect of Backbone Regiochemistry on Conductivity, Charge Density, and Polaron Structure of n-Doped Donor–Acceptor Polymers. Chemistry of Materials, 2019, 31, 3395-3406.	3.2	44
279	Efficient Synthesis and Structural Characteristics of Zwitterionic Twisted π-Electron System Biaryls. Organic Letters, 2005, 7, 3721-3724.	2.4	43
280	Buta-1,3-diyne-Based π-Conjugated Polymers for Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 1430-1441.	2.2	43
281	Synergistic Boron Doping of Semiconductor and Dielectric Layers for High-Performance Metal Oxide Transistors: Interplay of Experiment and Theory. Journal of the American Chemical Society, 2018, 140, 12501-12510.	6.6	43
282	Polymer Doping Enables a Twoâ€Dimensional Electron Gas for Highâ€Performance Homojunction Oxide Thinâ€Film Transistors. Advanced Materials, 2019, 31, e1805082.	11.1	43
283	Investigation of the Optoelectronic Properties of Organic Light-Emitting Transistors Based on an Intrinsically Ambipolar Material. Journal of Physical Chemistry C, 2008, 112, 12993-12999.	1.5	42
284	Fullerene-Free Polymer Solar Cells with Highly Reduced Bimolecular Recombination and Field-Independent Charge Carrier Generation. Journal of Physical Chemistry Letters, 2014, 5, 2815-2822.	2.1	42
285	On-Surface Solvent-Free Crystal-to-Co-crystal Conversion by Non-Covalent Interactions. Journal of the American Chemical Society, 2014, 136, 11926-11929.	6.6	42
286	Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric. Organic Electronics, 2016, 28, 147-154.	1.4	42
287	Building Blocks for Highâ€Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Postâ€Fullerene ITIC Ensembles. ChemPhysChem, 2019, 20, 2608-2626.	1.0	42
288	Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7897-7902.	3.3	41

#	Article	IF	CITATIONS
289	Nanoscale n-channel and ambipolar organic field-effect transistors. Applied Physics Letters, 2006, 88, 183102.	1.5	40
290	Spray-printed organic field-effect transistors and complementary inverters. Journal of Materials Chemistry C, 2013, 1, 1500.	2.7	40
291	Hybrid Organic/Inorganic Thinâ€Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1262-1267.	11.1	40
292	Benzo[<i>d</i>][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 6390-6400.	3.2	40
293	Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Eco-friendly Acid-Processed Electrodes. IScience, 2020, 23, 100981.	1.9	40
294	Extended lithium ion pair indicator scale in tetrahydrofuran. Canadian Journal of Chemistry, 1998, 76, 765-769.	0.6	39
295	Synthesis of Octabromoperylene Dianhydride and Diimides: Evidence of Halogen Bonding and Semiconducting Properties. Organic Letters, 2016, 18, 472-475.	2.4	39
296	Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide–Polymer Blend Charge Transport. Journal of the American Chemical Society, 2018, 140, 5457-5473.	6.6	39
297	Organic Complementary D Flip-Flops Enabled by Perylene Diimides and Pentacene. IEEE Electron Device Letters, 2006, 27, 737-739.	2.2	38
298	Highâ€Performance Thinâ€Film Transistors from Solutionâ€Processed Cadmium Selenide and a Selfâ€Assembled Multilayer Gate Dielectric. Advanced Materials, 2008, 20, 2319-2324.	11.1	38
299	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. Chemistry of Materials, 2011, 23, 2185-2200.	3.2	38
300	Supramolecular Order of Solutionâ€Processed Perylenediimide Thin Films: Highâ€Performance Smallâ€Channel nâ€Type Organic Transistors. Advanced Functional Materials, 2011, 21, 4479-4486.	7.8	38
301	High-speed organic single-crystal transistors gated with short-channel air gaps: Efficient hole and electron injection in organic semiconductor crystals. Organic Electronics, 2013, 14, 1656-1662.	1.4	38
302	Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors. Journal of Materials Chemistry C, 2013, 1, 1959.	2.7	38
303	Green solvents for organic thin-film transistor processing. Journal of Materials Chemistry C, 2020, 8, 5786-5794.	2.7	38
304	Solution Processable Pseudo <i>n</i> -Thienoacenes via Intramolecular S··ÂS Lock for High Performance Organic Field Effect Transistors. Chemistry of Materials, 2020, 32, 1422-1429.	3.2	38
305	Twisted π-Electron System Electrooptic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Nonbonded Repulsions. Journal of Physical Chemistry C, 2008, 112, 8005-8015.	1.5	37
306	Bulk Heterojunction Solar Cells – Tuning of the HOMO and LUMO Energy Levels of Pyrrolic Squaraine Dyes. European Journal of Organic Chemistry, 2011, 2011, 5555-5563.	1.2	37

#	Article	IF	CITATIONS
307	Fine Structural Tuning of Cyanated Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole–Oligothiophene Copolymers: Synthesis, Characterization, and Photovoltaic Response. Macromolecules, 2013, 46, 6419-6430.	2.2	37
308	Molecular and Electronic‣tructure Basis of the Ambipolar Behavior of Naphthalimide–Terthiophene Derivatives: Implementation in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2013, 19, 12458-12467.	1.7	37
309	Simultaneous extraction of charge density dependent mobility and variable contact resistance from thin film transistors. Applied Physics Letters, 2014, 104, 193501.	1.5	37
310	Solution-Processed Barium Salts as Charge Injection Layers for High Performance N-Channel Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 9614-9621.	4.0	37
311	Influence of Semiconductor Thickness and Molecular Weight on the Charge Transport of a Naphthalenediimide-Based Copolymer in Thin-Film Transistors. ACS Applied Materials & Interfaces, 2015, 7, 12478-12487.	4.0	37
312	Cation Size Effects on the Electronic and Structural Properties of Solutionâ€Processed In–X–O Thin Films. Advanced Electronic Materials, 2015, 1, 1500146.	2.6	36
313	Dielectric materials for electrolyte gated transistor applications. Journal of Materials Chemistry C, 2021, 9, 9348-9376.	2.7	36
314	Synthesis and thin-film transistor performance of benzodipyrrolinone and bithiophene donor-acceptor copolymers. Journal of Materials Chemistry, 2012, 22, 22282.	6.7	35
315	Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics. Applied Physics Letters, 2014, 105, .	1.5	35
316	Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indium–Gallium–Zinc Oxide Transistors. Chemistry of Materials, 2018, 30, 3323-3329.	3.2	35
317	Expeditious, scalable solution growth of metal oxide films by combustion blade coating for flexible electronics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9230-9238.	3.3	35
318	Design and Preparation of Zwitterionic Organic Thin Films:  Self-Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials. Langmuir, 2001, 17, 5939-5942.	1.6	34
319	Effects of bias stress on ZnO nanowire field-effect transistors fabricated with organic gate nanodielectrics. Applied Physics Letters, 2006, 89, 193506.	1.5	34
320	High performance In2O3 nanowire transistors using organic gate nanodielectrics. Applied Physics Letters, 2008, 92, 222105.	1.5	34
321	Azine- and Azole-Functionalized Oligo´ and Polythiophene Semiconductors for Organic Thin-Film Transistors. Materials, 2010, 3, 1533-1558.	1.3	34
322	Fused Thiophene Semiconductors: Crystal Structure–Film Microstructure Transistor Performance Correlations. Advanced Functional Materials, 2013, 23, 3850-3865.	7.8	34
323	Selective Remanent Ambipolar Charge Transport in Polymeric Fieldâ€Effect Transistors For Highâ€Performance Logic Circuits Fabricated in Ambient. Advanced Materials, 2014, 26, 7438-7443.	11.1	34
324	Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles. Solar Energy Materials and Solar Cells, 2015, 141, 171-177.	3.0	34

#	Article	IF	CITATIONS
325	Mobility versus Alignment of a Semiconducting π-Extended Discotic Liquid-Crystalline Triindole. ACS Applied Materials & Interfaces, 2016, 8, 26964-26971.	4.0	34
326	Flexible complementary circuits operating at sub-0.5 V via hybrid organic–inorganic electrolyte-gated transistors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
327	Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics. ACS Energy Letters, 2017, 2, 1690-1697.	8.8	33
328	Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?. Journal of the American Chemical Society, 2019, 141, 13410-13420.	6.6	33
329	To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2% when the Donor Polymer is Halogenâ€Free. Advanced Energy Materials, 2021, 11, 2102648.	10.2	33
330	Gels excel. Nature Materials, 2008, 7, 839-840.	13.3	32
331	Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. Applied Physics Letters, 2009, 95, .	1.5	32
332	Chargeâ€Trap Flashâ€Memory Oxide Transistors Enabled by Copper–Zirconia Composites. Advanced Materials, 2014, 26, 7170-7177.	11.1	32
333	Alkynyl-Functionalized Head-to-Head Linkage Containing Bithiophene as a Weak Donor Unit for High-Performance Polymer Semiconductors. Chemistry of Materials, 2017, 29, 4109-4121.	3.2	32
334	Polymersolarzellen: Fortschritt, Herausforderungen und Perspektiven. Angewandte Chemie, 2019, 131, 4173-4186.	1.6	32
335	Ï€-Extended Naphthalene Diimide Derivatives for n-Type Semiconducting Polymers. Chemistry of Materials, 2020, 32, 5317-5326.	3.2	32
336	Pentacene Transistors Fabricated on Photocurable Polymer Gate Dielectrics: Tuning Surface Viscoelasticity and Device Response. Advanced Materials, 2010, 22, 342-346.	11.1	31
337	Thermal Conductivity Comparison of Indium Gallium Zinc Oxide Thin Films: Dependence on Temperature, Crystallinity, and Porosity. Journal of Physical Chemistry C, 2016, 120, 7467-7475.	1.5	31
338	Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9217-9232.	5.2	31
339	New Benzo[1,2- <i>d</i> :4,5- <i>d</i> ′]bis([1,2,3]thiadiazole) (iso-BBT)-Based Polymers for Application in Transistors and Solar Cells. Chemistry of Materials, 2019, 31, 6519-6529.	3.2	31
340	Stable Postfullerene Solar Cells via Direct C–H Arylation Polymerization. Morphology–Performance Relationships. Chemistry of Materials, 2019, 31, 4313-4321.	3.2	31
341	Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18231-18239.	3.3	31
342	Time-of-flight measurements and vertical transport in a high electron-mobility polymer. Applied Physics Letters, 2011, 99, 183310.	1.5	30

#	Article	IF	CITATIONS
343	Solutionâ€Processed Crystalline nâ€Type Organic Transistors Stable against Electrical Stress and Photooxidation. Advanced Functional Materials, 2016, 26, 2365-2370.	7.8	30
344	Engineering Intrinsic Flexibility in Polycrystalline Molecular Semiconductor Films by Grain Boundary Plasticization. Journal of the American Chemical Society, 2020, 142, 5487-5492.	6.6	30
345	Incisive Structureâ^'Spectroscopic Correlation in Oligothiophenes Functionalized with (±) Inductive/Mesomeric Fluorine Groups:Â Joint Raman and DFT Study. Journal of the American Chemical Society, 2005, 127, 13364-13372.	6.6	29
346	Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water. MRS Communications, 2016, 6, 47-60.	0.8	29
347	Low-Temperature Postfunctionalization of Highly Conductive Oxide Thin-Films toward Solution-Based Large-Scale Electronics. ACS Applied Materials & Interfaces, 2017, 9, 26191-26200.	4.0	29
348	Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs. Journal of the American Chemical Society, 2018, 140, 7519-7525.	6.6	29
349	Functionalized perylenes: origin of the enhanced electrical performances. Applied Physics A: Materials Science and Processing, 2009, 95, 303-308.	1.1	28
350	Solutionâ€Processed Highâ€Performance Tetrathienothiopheneâ€Based Small Molecular Blends for Ambipolar Charge Transport. Advanced Functional Materials, 2018, 28, 1801025.	7.8	28
351	Thienoisoindigo (TII)â€Based Quinoidal Small Molecules for Highâ€Performance nâ€Type Organic Field Effect Transistors. Advanced Science, 2021, 8, 2002930.	5.6	28
352	Selecting Semiconducting Singleâ€Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimideâ€Based Polymers. Advanced Electronic Materials, 2015, 1, 1500074.	2.6	27
353	Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films. Journal of Materials Chemistry C, 2015, 3, 5985-5994.	2.7	27
354	Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. Journal of the American Chemical Society, 2020, 142, 12440-12452.	6.6	27
355	2,3-Diphenylthieno[3,4- <i>b</i>]pyrazines as Hole-Transporting Materials for Stable, High-Performance Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2118-2127.	8.8	27
356	Device performance and density of trap states of organic and inorganic field-effect transistors. Organic Electronics, 2016, 28, 306-313.	1.4	26
357	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. Journal of Materials Chemistry A, 2017, 5, 5351-5361.	5.2	26
358	Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes <i>via</i> an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 25081-25091.	4.0	26
359	Efficient and Versatile Interconnection Layer by Solvent Treatment of PEDOT:PSS Interlayer for Airâ€Processed Organic Tandem Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600770.	1.9	25
360	Fast switching characteristics in vertical organic field effect transistors. Applied Physics Letters, 2013, 103, 073502.	1.5	24

#	Article	IF	CITATIONS
361	Naphtalenediimide-based donor–acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: evaluation of electron-transporting properties and application in printed polymer transistors. Journal of Materials Chemistry C, 2014, 2, 5149-5154.	2.7	24
362	Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2016, 26, 8011-8022.	7.8	24
363	Dithienylbenzodiimide: a new electron-deficient unit for n-type polymer semiconductors. Journal of Materials Chemistry C, 2017, 5, 9559-9569.	2.7	24
364	Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17551-17557.	3.3	24
365	Self-Assembled Nanodielectrics for Solution-Processed Top-Gate Amorphous IGZO Thin-Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 15399-15408.	4.0	24
366	New Opportunities for Highâ€Performance Sourceâ€Gated Transistors Using Unconventional Materials. Advanced Science, 2021, 8, e2101473.	5.6	24
367	Organic field-effect transistors based on a crosslinkable polymer blend as the semiconducting layer. Applied Physics Letters, 2005, 87, 183501.	1.5	23
368	Synthesis and Properties of Semiconducting Bispyrrolothiophenes for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2014, 20, 5938-5945.	1.7	23
369	Selfâ€Assembled Nanodielectrics for Highâ€Speed, Lowâ€Voltage Solutionâ€Processed Polymer Logic Circuits. Advanced Electronic Materials, 2015, 1, 1500226.	2.6	23
370	Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors. Chemistry of Materials, 2019, 31, 7608-7617.	3.2	23
371	Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for Highâ€Resolution and Enhanced Colorâ€Selective Imaging. Advanced Materials, 2022, 34, e2106215.	11.1	23
372	Design and synthesis of heterocyclic multi-branched dyes for two-photon absorption. Synthetic Metals, 2003, 139, 795-797.	2.1	22
373	Proton radiation hardness of single-nanowire transistors using robust organic gate nanodielectrics. Applied Physics Letters, 2006, 89, 073510.	1.5	22
374	Cross-Linkable Molecular Hole-Transporting Semiconductor for Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16967-16975.	1.5	22
375	Novel unsymmetrical squaraine-based small molecules for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 847-854.	2.7	22
376	Performance, Morphology, and Charge Recombination Correlations in Ternary Squaraine Solar Cells. Chemistry of Materials, 2018, 30, 6810-6820.	3.2	22
377	Heteroalkylâ€Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials, 2022, 32, .	7.8	22
378	Morphological Characterization of H Aggregates in Langmuirâ^Blodgett Films of Pyridiniumâ^Dicyanomethanide Dyes. Langmuir, 1999, 15, 2149-2151.	1.6	21

#	Article	IF	CITATIONS
379	Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes. Organic Electronics, 2012, 13, 320-328.	1.4	21
380	Printed diodes operating at mobile phone frequencies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11917-11918.	3.3	21
381	A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS Nano, 2021, 15, 727-738.	7.3	21
382	Ion Pair First and Second Acidities of Some β-Diketones and Aggregation of Their Lithium and Cesium Enediolates in THF. Journal of Organic Chemistry, 2004, 69, 8345-8355.	1.7	20
383	Enhanced Thin-Film Transistor Performance by Combining 13,6-N-Sulfinylacetamidopentacene with Printed PEDOT:PSS Electrodes. Chemistry of Materials, 2011, 23, 1061-1069.	3.2	20
384	Synthesis and Properties of New Nâ€Heteroheptacenes for Solutionâ€Based Organic Field Effect Transistors. Chemistry - A European Journal, 2017, 23, 12542-12549.	1.7	20
385	Pushâ^'Pull Ï€-Electron Phosphonic-Acid-Based Self-Assembled Multilayer Nanodielectrics Fabricated in Ambient for Organic Transistors. Chemistry of Materials, 2009, 21, 1173-1175.	3.2	19
386	Ambipolar field-effect transistor based on α,ω-dihexylquaterthiophene and α,ω-diperfluoroquaterthiophene vertical heterojunction. Microelectronics Reliability, 2010, 50, 1861-1865.	0.9	19
387	Coordination Polymer Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 6001-6003.	7.2	19
388	Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nature Communications, 2021, 12, 4937.	5.8	19
389	Ion Pair Acidities and Aggregation of Some Amide and Oxazoline Enolates in THFâ€,‡. Journal of Organic Chemistry, 1999, 64, 2281-2286.	1.7	18
390	Comparative passivation effects of self-assembled mono- and multilayers on GaAs junction field effect transistors. Applied Physics Letters, 2008, 92, 123509.	1.5	18
391	Ion Pair pKs of Some Amines: Extension of the Computed Lithium pK Scale. Journal of Organic Chemistry, 2012, 77, 985-990.	1.7	18
392	Enhanced Fill Factor through Chalcogen Side-Chain Manipulation in Small-Molecule Photovoltaics. ACS Energy Letters, 2017, 2, 2415-2421.	8.8	18
393	The Dipole Moment Inversion Effects in Self-Assembled Nanodielectrics for Organic Transistors. Chemistry of Materials, 2017, 29, 9974-9980.	3.2	18
394	Molecular Encapsulation of Naphthalene Diimide (NDI) Based Ï€â€Conjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie - International Edition, 2021, 60, 25005-25012.	7.2	18
395	Diheteroarylmethanes. 8.1Mapping Charge and Electron-Withdrawing Power of the 1,2,4-Triazol-5-yl Substituent. Journal of Organic Chemistry, 1999, 64, 6756-6763.	1.7	17
396	Reinforced Selfâ€Assembled Nanodielectrics for Highâ€Performance Transparent Thin Film Transistors. Advanced Materials, 2011, 23, 992-997.	11.1	17

#	Article	IF	CITATIONS
397	Solution-Processed Self-Assembled Nanodielectrics on Template-Stripped Metal Substrates. ACS Applied Materials & Interfaces, 2015, 7, 26360-26366.	4.0	17
398	Annulated Thienyl-Vinylene-Thienyl Building Blocks for π-Conjugated Copolymers: Ring Dimensions and Isomeric Structure Effects on π-Conjugation Length and Charge Transport. Chemistry of Materials, 2016, 28, 5772-5783.	3.2	17
399	Molecular-Scale Characterization of Photoinduced Charge Separation in Mixed-Dimensional InSe–Organic van der Waals Heterostructures. ACS Nano, 2020, 14, 3509-3518.	7.3	17
400	Cyano-disubstituted dipyrrolopyrazinedione (CNPzDP) small molecules for solution processed n-channel organic thin-film transistors. Journal of Materials Chemistry C, 2013, 1, 5624.	2.7	16
401	Open circuit voltage tuning through molecular design in hydrazone end capped donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 2631.	5.2	16
402	Functionalized benzothieno[3,2 b]thiophenes (BTTs) for high performance organic thin-film transistors (OTFTs). Journal of Materials Chemistry C, 2014, 2, 7599.	2.7	16
403	Ultrahigh Vacuum Self-Assembly of Rotationally Commensurate C8-BTBT/MoS ₂ /Graphene Mixed-Dimensional Heterostructures. Chemistry of Materials, 2019, 31, 1761-1766.	3.2	16
404	Structure–Charge Transport Relationships in Fluoride-Doped Amorphous Semiconducting Indium Oxide: Combined Experimental and Theoretical Analysis. Chemistry of Materials, 2020, 32, 805-820.	3.2	16
405	Processable High Electron Mobility Ï€â€Copolymers via Mesoscale Backbone Conformational Ordering. Advanced Functional Materials, 2021, 31, 2009359.	7.8	16
406	8-Purinyl versus 2-Benzimidazolyl Carbanions:Â Charge Demands of the Heterocycles and Ligand Properties of the Bis(heteroaryl)methanes1. Journal of Organic Chemistry, 1998, 63, 436-444.	1.7	15
407	Design and synthesis of new functional polymers for nonlinear optical applications. Synthetic Metals, 2003, 139, 629-632.	2.1	15
408	Organic Lightâ€Emitting Diodes with Fieldâ€Effectâ€Assisted Electron Transport Based on <i>l±â€bi;</i> , <i>ï‰â€bi;</i> â€Diperfluorohexylâ€quaterthiophene. Advanced Functional Materials, 2008, 18, 3645-3652.	7.8	15
409	Studies of Photogenerated Charge Carriers from Donorâ^'Acceptor Interfaces in Organic Field Effect Transistors. Implications for Organic Solar Cells. Journal of Physical Chemistry C, 2010, 114, 20609-20613.	1.5	15
410	Empirically based device modeling of bulk heterojunction organic photovoltaics. Journal of Applied Physics, 2013, 113, 154506.	1.1	15
411	Sustainable synthetic approach to π-conjugated arylacetylenic semiconductors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 9288.	1.7	15
412	Electron Transport and Nanomorphology in Solutionâ€Processed Polymeric Semiconductor nâ€Doped with an Airâ€Stable Organometallic Dimer. Advanced Electronic Materials, 2017, 3, 1600546.	2.6	15
413	Recent Advances in Squaraine Dyes for Bulk-Heterojunction Organic Solar Cells. Organic Photonics and Photovoltaics, 2019, 6, 1-16.	1.3	15
414	Benzotrithiophene versus Benzo/Naphthodithiophene Building Blocks: The Effect of Star‣haped versus Linear Conjugation on Their Electronic Structures. Chemistry - A European Journal, 2016, 22, 6374-6381.	1.7	14

#	Article	IF	CITATIONS
415	Direct Printing of Graphene Electrodes for High-Performance Organic Inverters. ACS Applied Materials & Interfaces, 2018, 10, 15988-15995.	4.0	14
416	Low-Loss Near-Infrared Hyperbolic Metamaterials with Epitaxial ITO-In ₂ O ₃ Multilayers. ACS Photonics, 2018, 5, 2000-2007.	3.2	14
417	Facial synthesis of highly active polymer vanadium molybdate nanocomposite: Improved thermoelectric and antimicrobial studies. Journal of Physics and Chemistry of Solids, 2019, 131, 148-155.	1.9	14
418	Recent Advances in Multi‣ayer Lightâ€Emitting Heterostructure Transistors. Small, 2021, 17, e2007661.	5.2	14
419	All-Polymer Solar Cells Incorporating Readily Accessible Naphthalene Diimide and Isoindigo Acceptor Polymers for Improved Light Harvesting. Chemistry of Materials, 2022, 34, 3267-3279.	3.2	14
420	High-performance GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics. Applied Physics Letters, 2006, 89, 142101.	1.5	13
421	Interface properties of OFETs based on an airâ€stable nâ€channel perylene tetracarboxylic diimide semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 585-593.	0.8	13
422	Marked Cofuel Tuning of Combustion Synthesis Pathways for Metal Oxide Semiconductor Films. Advanced Electronic Materials, 2019, 5, 1900540.	2.6	13
423	Aggregated Structures in Langmuirâ^'Blodgett Films of Pyridiniumâ^'Dicyanomethanide Dyes. Langmuir, 1997, 13, 5787-5790.	1.6	12
424	Regio(ir)regular naphthalenediimide- and perylenediimide-bithiophene copolymers: how MO localization controls the bandgap. Journal of Materials Chemistry C, 2016, 4, 9405-9410.	2.7	12
425	Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film Transistors. ACS Applied Materials & Interfaces, 2018, 10, 21492-21498.	4.0	12
426	Printable Organicâ€Inorganic Nanoscale Multilayer Gate Dielectrics for Thinâ€Film Transistors Enabled by a Polymeric Organic Interlayer. Advanced Functional Materials, 2020, 30, 2005069.	7.8	12
427	Host-Free Deep-Blue Organic Light-Emitting Transistors Based on a Novel Fluorescent Emitter. ACS Applied Materials & Interfaces, 2020, 12, 40558-40565.	4.0	12
428	Indenofluorenes for organic optoelectronics: the dance of fused five- and six-membered rings enabling structural versatility. Journal of Materials Chemistry C, 2022, 10, 8496-8535.	2.7	12
429	Langmuirâ^ Blodgett Films of a New Pyridiniumâ^ Dicyanomethanide Dye and Their Potential Optical Applications. Langmuir, 1997, 13, 3434-3437.	1.6	11
430	Comparisons of Ion Pair Acidities of Some Acidic Carbon Acids1. Journal of Organic Chemistry, 2000, 65, 4195-4197.	1.7	11
431	Crosslinked Poly(amido-amine)s as Superior Matrices for Chemical Incorporation of Highly Efficient Organic Nonlinear Optical Dyes. Macromolecular Rapid Communications, 2003, 24, 397-402.	2.0	11
432	High-Capacitance Organic Nanodielectrics:Â Effective Medium Models of Their Response. Journal of Physical Chemistry B, 2006, 110, 22394-22399.	1.2	11

#	Article	IF	CITATIONS
433	Insights Into Interface Treatments in p-Channel Organic Thin-Film Transistors Based on a Novel Molecular Semiconductor. IEEE Transactions on Electron Devices, 2017, 64, 2338-2344.	1.6	11
434	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. ACS Energy Letters, 0, , .	8.8	11
435	Doping Indium Oxide Films with Aminoâ€Polymers of Varying Nitrogen Content Markedly Affects Charge Transport and Mechanical Flexibility. Advanced Functional Materials, 2021, 31, 2100451.	7.8	10
436	Tuning the antiaromatic character and charge transport of pentalene-based antiaromatic compounds by substitution. Journal of Materials Chemistry C, 2022, 10, 2724-2731.	2.7	10
437	Gate-Planarized Low-Operating Voltage Organic Field-Effect Transistors Enabled by Hot Polymer Pressing/Embedding of Conducting Metal Lines. Journal of the American Chemical Society, 2006, 128, 4928-4929.	6.6	9
438	Photoresponse of pentaceneâ€based transistors. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 460-466.	0.8	9
439	Guest Editorial Organic/Printed Electronics: A Circuits and Systems Perspective. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 1-6.	2.7	9
440	Oxide–Polymer Heterojunction Diodes with a Nanoscopic Phase-Separated Insulating Layer. Nano Letters, 2019, 19, 471-476.	4.5	9
441	Ultraviolet Light-Densified Oxide-Organic Self-Assembled Dielectrics: Processing Thin-Film Transistors at Room Temperature. ACS Applied Materials & amp; Interfaces, 2021, 13, 3445-3453.	4.0	9
442	Information storage based on photochemical effects in mixed Langmuir–Blodgett films. Thin Solid Films, 1999, 340, 218-220.	0.8	8
443	Organic Semiconductor Materials. , 2004, , 83-159.		8
444	Control mechanisms for transport and nonlinear optical response in organic materials: a tale of twists and barriers. Inorganica Chimica Acta, 2004, 357, 3980-3990.	1.2	8
445	Realization of dual-channel organic field-effect transistors and their applications to chemical sensing. Applied Physics Letters, 2008, 93, 133304.	1.5	8
446	Carbonylâ€Functionalized Quaterthiophenes: A Study of the Vibrational Raman and Electronic Absorption/Emission Properties Guided by Theoretical Calculations. ChemPhysChem, 2012, 13, 168-176.	1.0	8
447	Polypyridyl complexes as electron transporting materials for inverted bulk heterojunction solar cells: the metal center effect. Journal of Materials Chemistry C, 2016, 4, 4634-4639.	2.7	8
448	Even and odd oligothiophene-bridged bis-naphthalimides for n-type and ambipolar organic field effect transistors. Journal of Materials Chemistry C, 2017, 5, 9439-9450.	2.7	8
449	Synthesis and Characterization of Solution-Processable Core-Cyanated Perylene-3,4;9,10-bis(dicarboximide) Derivatives. Organic Letters, 2010, 12, 4852-4855.	2.4	7
450	Organic circuits reach new heights. Nature Electronics, 2021, 4, 544-545.	13.1	7

#	Article	IF	CITATIONS
451	Role of Fluoride Doping in Low-Temperature Combustion-Synthesized ZrO _{<i>x</i>} Dielectric Films. ACS Applied Materials & Interfaces, 2022, 14, 12340-12349.	4.0	7
452	54-3: <i>Invited Paper</i> : Flexible Active-Matrix OLET Display on a Plastic Substrate. Digest of Technical Papers SID International Symposium, 2016, 47, 739-742.	0.1	6
453	Synthesis and Characterization of Squaraineâ€Based Photocrosslinkable Resists for Bulk Heterojunction Solar Cells. European Journal of Organic Chemistry, 2016, 2016, 4032-4040.	1.2	6
454	P-176: Innovative Trilayer Organic Light Emitting Transistor (OLET) Structure for Blue Emission. Digest of Technical Papers SID International Symposium, 2016, 47, 1779-1782.	0.1	6
455	High-Quality Solution-Processed Metal-Oxide Gate Dielectrics Realized With a Photo-Activated Metal-Oxide Nanocluster Precursor. IEEE Electron Device Letters, 2018, 39, 1668-1671.	2.2	6
456	Combustion Synthesis and Polymer Doping of Metal Oxides for High-Performance Electronic Circuitry. Accounts of Chemical Research, 2022, 55, 429-441.	7.6	6
457	Stretchable helix-structured fibre electronics. Nature Electronics, 2021, 4, 864-865.	13.1	6
458	Langmuir–Blodgett films of pyridinium-dicyanomethanide dyes mixtures with photobleachable absorption bands. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 289-296.	2.3	5
459	Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores. , 1999, 3803, 18.		5
460	Enabling Wearable and Other Novel Applications through Flexible TFTs. Information Display, 2016, 32, 6-11.	0.1	5
461	Ï€-Conjugated donor-acceptor small molecule thin-films on gold electrodes for reducing the metal work-function. Thin Solid Films, 2016, 616, 320-327.	0.8	5
462	Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors. ACS Applied Materials & Interfaces, 2017, 9, 42011-42019.	4.0	5
463	Analysis of Low-Frequency Noise in Quantum Dot/Metal-Oxide Phototransistors With Metal Chalcogenide Interfaces. IEEE Electron Device Letters, 2022, 43, 1499-1502.	2.2	5
464	Synthesis, characterization, and photoinduced electron transfer properties of core-functionalized perylene-3,4:9,10-bis(dicarboximide)s with pendant anthracenes. Journal of Materials Chemistry, 2011, 21, 19049.	6.7	4
465	33.4: Flexible IGZO TFTs with a Disruptive Photoâ€patternable and Thermally Stable Organic Gate Insulator. Digest of Technical Papers SID International Symposium, 2015, 46, 486-489.	0.1	4
466	Photosensing Properties of Pentacene OFETs Based on a Novel PMMA Copolymer Gate Dielectric. Journal of Display Technology, 2015, 11, 533-540.	1.3	4
467	Polymers make charge flow easy. Nature, 2016, 539, 499-500.	13.7	4
468	Analysis of the persistent photoresponse of C8BTBT transistors in the near-bandgap spectral region. Organic Electronics, 2016, 30, 83-91.	1.4	4

#	Article	IF	CITATIONS
469	Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. ACS Applied Materials & Interfaces, 2018, 10, 6484-6490.	4.0	4
470	Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment. RSC Advances, 2019, 9, 730-737.	1.7	4
471	A facile approach for significantly enhancing fluorescent gas sensing by oxygen plasma treatments. Sensors and Actuators B: Chemical, 2021, 331, 129397.	4.0	4
472	Interplay between Charge Injection, Electron Transport, and Quantum Efficiency in Ambipolar Trilayer Organic Lightâ€Emitting Transistors. Advanced Materials Interfaces, 2022, 9, .	1.9	4
473	A First Study of Langmuirâ^'Blodgett Films of 1-[N-(n-Hexadecyl)-4-pyridinio]-2-[5-(dicyano-) Tj ETQq1 1 0.78431	4 rgBT /O\ 9.6	verlock 10 Tf.
474	High mobility solution-processed n-channel organic thin film transistors. , 2007, , .		3
475	Organic Thinâ€Film Transistors: Thiazole Imideâ€Based Allâ€Acceptor Homopolymer: Achieving Highâ€Performance Unipolar Electron Transport in Organic Thinâ€Film Transistors (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870071.	11.1	3
476	Cross-Plane Thermal Conductance of Phosphonate-Based Self-Assembled Monolayers and Self-Assembled Nanodielectrics. ACS Applied Materials & Interfaces, 2020, 12, 34901-34909.	4.0	3
477	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. Materials Research Society Symposia Proceedings, 2003, 771, 1281.	0.1	2
478	N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores. Materials Research Society Symposia Proceedings, 2003, 769, 1181.	0.1	2
479	Themed issue on "Organic field-effect transistors: interfacial phenomena and electronic propertiesâ€. Physical Chemistry Chemical Physics, 2015, 17, 26509-26511.	1.3	2
480	Organic gate insulator materials for amorphous metal oxide TFTs. , 2015, , .		2
481	Across the Board: Antonio Facchetti. ChemSusChem, 2018, 11, 3829-3833.	3.6	2
482	Nano Pt-decorated transparent solution-processed oxide semiconductor sensor withÂppm detection capability. RSC Advances, 2019, 9, 6193-6198.	1.7	2
483	3D versus 2D Electrolyte–Semiconductor Interfaces in Rylenediimideâ€Based Electronâ€Transporting Waterâ€Gated Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000638.	2.6	2
484	Molecular Encapsulation of Naphthalene Diimide (NDI) Based π onjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie, 0, , .	1.6	2
485	Charge Transport and Recombination in Organic Solar Cells (OSCs). , 2014, , 19-52.		2
486	Systematic Analysis of Self-Assembled Nanodielectric Architecture and Organization Effects on Organic Transistor Switching. ACS Applied Electronic Materials, 2022, 4, 2015-2025.	2.0	2

#	Article	IF	CITATIONS
487	Synthesis and Unprecedented Electro-Optic Response Properties of Twisted π-System Chromophores. Materials Research Society Symposia Proceedings, 2005, 866, 126.	0.1	1
488	Organic-Inorganic Flexible and Transparent Electronics. , 2008, , .		1
489	P-194L: Late-News Poster: Through-Breaking Organic TFT Materials for Active Matrix Display Backplane Application. Digest of Technical Papers SID International Symposium, 2010, 41, 1679.	0.1	1
490	Organic Transistors: Supramolecular Order of Solution-Processed Perylenediimide Thin Films: High-Performance Small-Channel n-Type Organic Transistors (Adv. Funct. Mater. 23/2011). Advanced Functional Materials, 2011, 21, 4478-4478.	7.8	1
491	Organic Complementary Circuits: Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-k Dielectric for Ambipolar Electronic Circuits (Adv. Mater.) Tj ETQq1 1 (0.7 81 4314	rg&T /Overloc
492	Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors. Journal of Applied Physics, 2018, 123, .	1.1	1
493	High-performance organic circuits based on precisely aligned single-crystal arrays. RSC Advances, 2018, 8, 17417-17420.	1.7	1
494	Molecular conformation-induced interfacial stress at the origin of the instability of organic transistors. Science China Chemistry, 2021, 64, 1437-1438.	4.2	1
495	50.2: Invited Paper: Organic Materials for Highâ€Performance and Flexible TFT Backplanes. Digest of Technical Papers SID International Symposium, 2021, 52, 608-608.	0.1	1
496	Processing–Structure–Performance Relationship in Organic Transistors: Experiments and Model. Electronics (Switzerland), 2022, 11, 197.	1.8	1
497	Paper-based substrates for sustainable (opto)electronic devices. , 2022, , 339-390.		1
498	Fluoride Doping in Crystalline and Amorphous Indium Oxide Semiconductors. Chemistry of Materials, 0, , .	3.2	1
499	Bisperfluorophenyl-Substituted Thiophene Oligomers. Organic Semiconductors with Complementary-Type Carrier Mobility. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	0
500	Novel Heteroaromatic-Based Multi-Branched Dyes with Enhanced Two-Photon Absorption Activity. ChemInform, 2003, 34, no.	0.1	0
501	Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors. , 2003, , .		0
502	Electron-Transporting Thiophene-Based Semiconductors Exhibiting Very High Field Effect Mobilities. Materials Research Society Symposia Proceedings, 2004, 814, 96.	0.1	0
503	Molecular Dielectric Multilayers for Ultra-Low-Voltage Organic Thin Film Transistors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
504	Novel Dielectric Materials for Organic Electronics. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0

#	Article	IF	CITATIONS
505	Interfacial Phenomena Affecting Charge Transport In Small Molecule Organic Thin-Film Transistors. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
506	Organic complementary circuits using solution deposited active semiconductors. , 2006, , .		0
507	New building blocks and growth processes for high-performance self-assembled electro-optic materials. , 2006, , .		0
508	High-Performance Enhancement-mode ZnO Nanowire Field-Effect Transistors with Organic Nanodielectrics: Effects of Ozone Treatments. , 2006, , .		0
509	Microstructural mobility of the polymeric gate insulator affecting pentacene charge transport. , 2007, 6658, 92.		0
510	High performance ln <inf>2</inf> O <inf>3</inf> nanowire transistors using organic gate nanodielectrics. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
511	Effect of Polymer Gate Dielectric Surface Viscoelasticity on Pentacene Thin-Film Transistor Performance. Materials Research Society Symposia Proceedings, 2008, 1091, 1.	0.1	0
512	Performance of organic light-emitting diodes with remote metallic contact using high mobility electron-transport layers. , 2008, , .		0
513	High Performance N-type Organic Thin-Film Transistors with Inert Contact Metals. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
514	Novel semiconductors based on functionalized benzo[d,d']thieno[3,2- b ;4,5- b']dithiophenes (BTDTs) and the effects of thin film growth conditions on organic field effect transistor performance. Proceedings of SPIE, 2010, , .	0.8	0
515	Organic Field-Effect Transistors: High Electron Mobility in Air for N,N′-1H,1H-Perfluorobutyldicyanoperylene Carboxydi-imide Solution-Crystallized Thin-Film Transistors on Hydrophobic Surfaces (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3680-3680.	11.1	0
516	Naphthodithiophene-Diketopyrrolopyrrole Small Molecule Donors for Efficient Solution-Processed Solar Cells. Materials Research Society Symposia Proceedings, 2012, 1390, 34.	0.1	0
517	Polymer Solar Cells: Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2362-2362.	11.1	0
518	New Alkoxyâ€Functionalized Naphthodithiopheneâ€Based Semiconducting Oligomers and Polymers. Israel Journal of Chemistry, 2014, 54, 796-816.	1.0	0
519	CHAPTER 4. Self-Assembled Mono- and Multilayers for Functional Opto-Electronic Devices. RSC Smart Materials, 2014, , 119-172.	0.1	0
520	Oxide Transistors: Metal Oxide Transistors via Polyethylenimine Doping of the Channel Layer: Interplay of Doping, Microstructure, and Charge Transport (Adv. Funct. Mater. 34/2016). Advanced Functional Materials, 2016, 26, 6320-6320.	7.8	0
521	Organic Thinâ€Film Transistors: UV–Ozone Interfacial Modification in Organic Transistors for High‧ensitivity NO ₂ Detection (Adv. Mater. 31/2017). Advanced Materials, 2017, 29, .	11.1	0

Perovskite Solar Cells: Simultaneous Bottomâ€Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Smallâ€Molecule Electrolytes (Adv. Mater.) Tj ETQq0 0 ØrrgBT /Oværlock 10 [–] 522

#	Article	IF	CITATIONS
523	Tobin Marks' 75th birthday. A celebration of a career devoted to materials chemistry. Journal of Materials Chemistry C, 2020, 8, 14979-14982.	2.7	0
524	22.1: <i>Invited Paper:</i> Active and Passive Organic Materials for Mechanically Flexible and Stable Transistors for Backplane Applications. Digest of Technical Papers SID International Symposium, 2021, 52, 143-143.	0.1	0
525	Organic Transistors Based on Molecular and Polymeric Dielectric Materials. Springer Proceedings in Physics, 2009, , 199-203.	0.1	0