
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6307610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Components of the <i>Salmonella</i> Flagellar Export Apparatus and Classification of Export Substrates. Journal of Bacteriology, 1999, 181, 1388-1394.	1.0	321
2	Distinct roles of the Flil ATPase and proton motive force in bacterial flagellar protein export. Nature, 2008, 451, 485-488.	13.7	266
3	Flagella-Driven Motility of Bacteria. Biomolecules, 2019, 9, 279.	1.8	223
4	The bacterial flagellar motor and its structural diversity. Trends in Microbiology, 2015, 23, 267-274.	3.5	209
5	Interactions among components of the Salmonella flagellar export apparatus and its substrates. Molecular Microbiology, 2000, 35, 1052-1064.	1.2	196
6	Molecular motors of the bacterial flagella. Current Opinion in Structural Biology, 2008, 18, 693-701.	2.6	190
7	Mechanisms of type III protein export for bacterial flagellar assembly. Molecular BioSystems, 2008, 4, 1105.	2.9	171
8	Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Molecular Microbiology, 2009, 73, 710-718.	1.2	170
9	FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with Flil and inhibits its ATPase activity. Molecular Microbiology, 2000, 37, 1494-1503.	1.2	162
10	Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nature Structural and Molecular Biology, 2011, 18, 277-282.	3.6	161
11	Domain Structure of Salmonella FlhB, a Flagellar Export Component Responsible for Substrate Specificity Switching. Journal of Bacteriology, 2000, 182, 4906-4914.	1.0	159
12	Peptidoglycan-Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation in <i>Salmonella typhimurium</i> . Journal of Bacteriology, 1999, 181, 1555-1561.	1.0	159
13	Self-Assembly and Type III Protein Export of the Bacterial Flagellum. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 5-17.	1.0	146
14	Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proceedings of the United States of America, 2007, 104, 485-490.	3.3	146
15	FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Molecular Microbiology, 1999, 34, 295-304.	1.2	141
16	An energy transduction mechanism used in bacterial flagellar type III protein export. Nature Communications, 2011, 2, 475.	5.8	141
17	Protein export through the bacterial flagellar type III export pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1642-1648.	1.9	139
18	Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology, 2006, 14, 151-155.	3.5	129

Τοήγι Μιναμινό

#	Article	IF	CITATIONS
19	Structure and Function of the Bi-Directional Bacterial Flagellar Motor. Biomolecules, 2014, 4, 217-234.	1.8	127
20	FlhB Regulates Ordered Export of Flagellar Components via Autocleavage Mechanism. Journal of Biological Chemistry, 2005, 280, 41236-41242.	1.6	126
21	Common and distinct structural features of Salmonella injectisome and flagellar basal body. Scientific Reports, 2013, 3, 3369.	1.6	124
22	Tree of motility – A proposed history of motility systems in the tree of life. Genes To Cells, 2020, 25, 6-21.	0.5	108
23	Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Molecular Microbiology, 2010, 78, 1117-1129.	1.2	106
24	Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Molecular Microbiology, 2006, 60, 984-998.	1.2	102
25	The Type III Flagellar Export Specificity Switch is Dependent on FliK Ruler and a Molecular Clock. Journal of Molecular Biology, 2006, 359, 466-477.	2.0	100
26	Effect of Intracellular pH on Rotational Speed of Bacterial Flagellar Motors. Journal of Bacteriology, 2003, 185, 1190-1194.	1.0	99
27	Structural Insight into the Rotational Switching Mechanism of the Bacterial Flagellar Motor. PLoS Biology, 2011, 9, e1000616.	2.6	88
28	Role of FliJ in Flagellar Protein Export inSalmonella. Journal of Bacteriology, 2000, 182, 4207-4215.	1.0	86
29	Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Molecular Microbiology, 2002, 45, 967-982.	1.2	86
30	Interactions of bacterial flagellar chaperone–substrate complexes with <scp>FlhA</scp> contribute to coâ€ordinating assembly of the flagellar filament. Molecular Microbiology, 2013, 90, 1249-1261.	1.2	86
31	Assembly and stoichiometry of <scp>FliF</scp> and <scp>FlhA</scp> in <scp><i>S</i></scp> <i>almonella</i> flagellar basal body. Molecular Microbiology, 2014, 91, 1214-1226.	1.2	86
32	Intergenic Suppression between the Flagellar MS Ring Protein FliF of Salmonella and FlhA, a Membrane Component of Its Export Apparatus. Journal of Bacteriology, 2001, 183, 1655-1662.	1.0	85
33	Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Molecular Microbiology, 2010, 76, 260-268.	1.2	80
34	Flipping the switch: bringing order to flagellar assembly. Trends in Microbiology, 2006, 14, 519-526.	3.5	79
35	Proton onductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in <i>Salmonella</i> . FEBS Letters, 2010, 584, 1268-1272.	1.3	78
36	Distinct Roles of Highly Conserved Charged Residues at the MotA-FliG Interface in Bacterial Flagellar Motor Rotation. Journal of Bacteriology, 2013, 195, 474-481.	1.0	78

#	Article	IF	CITATIONS
37	The ATPase Flil Can Interact with the Type III Flagellar Protein Export Apparatus in the Absence of Its Regulator, FliH. Journal of Bacteriology, 2003, 185, 3983-3988.	1.0	77
38	Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Molecular Microbiology, 2012, 83, 775-788.	1.2	76
39	Interaction between FliE and FlgB, a Proximal Rod Component of the Flagellar Basal Body ofSalmonella. Journal of Bacteriology, 2000, 182, 3029-3036.	1.0	75
40	Substrate Specificity Classes and the Recognition Signal for Salmonella Type III Flagellar Export. Journal of Bacteriology, 2003, 185, 2485-2492.	1.0	75
41	Domain Organization and Function of Salmonella FliK, a Flagellar Hook-length Control Protein. Journal of Molecular Biology, 2004, 341, 491-502.	2.0	75
42	Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8812-8817.	3.3	73
43	Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA. PLoS ONE, 2011, 6, e22417.	1.1	73
44	Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Scientific Reports, 2014, 4, 6528.	1.6	72
45	Roles of the extreme Nâ€ŧerminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus. Molecular Microbiology, 2009, 74, 1471-1483.	1.2	70
46	The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Scientific Reports, 2014, 4, 7579.	1.6	70
47	Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biology, 2017, 15, e2002281.	2.6	69
48	The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export. PLoS Pathogens, 2016, 12, e1005495.	2.1	69
49	Effect of Intracellular pH on the Torque–Speed Relationship of Bacterial Proton-Driven Flagellar Motor. Journal of Molecular Biology, 2009, 386, 332-338.	2.0	66
50	Bacterial flagella grow through an injection-diffusion mechanism. ELife, 2017, 6, .	2.8	66
51	Structural and Functional Analysis of the C-terminal Cytoplasmic Domain of FlhA, an Integral Membrane Component of the Type III Flagellar Protein Export Apparatus in Salmonella. Journal of Molecular Biology, 2004, 343, 457-466.	2.0	64
52	Two Parts of the T3S4 Domain of the Hook-length Control Protein FliK Are Essential for the Substrate Specificity Switching of the Flagellar Type III Export Apparatus. Journal of Molecular Biology, 2006, 362, 1148-1158.	2.0	61
53	Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nature Communications, 2017, 8, 14276.	5.8	60
54	Interaction between FliJ and FlhA, Components of the Bacterial Flagellar Type III Export Apparatus. Journal of Bacteriology, 2013, 195, 466-473.	1.0	59

#	Article	IF	CITATIONS
55	Suppressor Analysis of the MotB(D33E) Mutation To Probe Bacterial Flagellar Motor Dynamics Coupled with Proton Translocation. Journal of Bacteriology, 2008, 190, 6660-6667.	1.0	58
56	Role of the C-Terminal Cytoplasmic Domain of FlhA in Bacterial Flagellar Type III Protein Export. Journal of Bacteriology, 2010, 192, 1929-1936.	1.0	57
57	Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3633-3638.	3.3	57
58	Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17616-17620.	3.3	55
59	Oligomerization of the Bacterial Flagellar ATPase Flil is Controlled by its Extreme N-terminal Region. Journal of Molecular Biology, 2006, 360, 510-519.	2.0	54
60	Interaction of FliK with the bacterial flagellar hook is required for efficient export specificity switching. Molecular Microbiology, 2009, 74, 239-251.	1.2	52
61	Flagellin Redundancy in Caulobacter crescentus and Its Implications for Flagellar Filament Assembly. Journal of Bacteriology, 2011, 193, 2695-2707.	1.0	52
62	Interaction of the Extreme N-Terminal Region of FliH with FlhA Is Required for Efficient Bacterial Flagellar Protein Export. Journal of Bacteriology, 2012, 194, 5353-5360.	1.0	52
63	Interaction between Flil ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Molecular Microbiology, 2012, 83, 168-178.	1.2	50
64	Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Advances, 2018, 4, eaao7054.	4.7	50
65	Loadâ€sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Molecular Microbiology, 2014, 91, 175-184.	1.2	48
66	Structural differences in the bacterial flagellar motor among bacterial species. Biophysics and Physicobiology, 2017, 14, 191-198.	0.5	47
67	Directional Switching Mechanism of the Bacterial Flagellar Motor. Computational and Structural Biotechnology Journal, 2019, 17, 1075-1081.	1.9	47
68	Substrate Specificity Switching of the Flagellum-specific Export Apparatus during Flagellar Morphogenesis inSalmonella typhimurium. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1301-1303.	0.6	46
69	Na ⁺ -induced structural transition of MotPS for stator assembly of the <i>Bacillus</i> flagellar motor. Science Advances, 2017, 3, eaao4119.	4.7	44
70	ATP-induced Flil hexamerization facilitates bacterial flagellar protein export. Biochemical and Biophysical Research Communications, 2009, 388, 323-327.	1.0	41
71	Characterization of the Periplasmic Domain of MotB and Implications for Its Role in the Stator Assembly of the Bacterial Flagellar Motor. Journal of Bacteriology, 2008, 190, 3314-3322.	1.0	40
72	High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences. MBio, 2016, 7, .	1.8	40

#	Article	IF	CITATIONS
73	Hierarchical protein export mechanism of the bacterial flagellar type III protein export apparatus. FEMS Microbiology Letters, 2018, 365, .	0.7	40
74	Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Molecular Microbiology, 2018, 109, 723-734.	1.2	40
75	Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure, 2019, 27, 965-976.e6.	1.6	39
76	Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella11Edited by M. F. Moody. Journal of Molecular Biology, 2001, 312, 1027-1036.	2.0	38
77	Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF. Cell Reports, 2017, 19, 895-901.	2.9	38
78	M153R Mutation in a pH-Sensitive Green Fluorescent Protein Stabilizes Its Fusion Proteins. PLoS ONE, 2011, 6, e19598.	1.1	38
79	FliH and FliI ensure efficient energy coupling of flagellar type <scp>III</scp> protein export in <i>Salmonella</i> . MicrobiologyOpen, 2016, 5, 424-435.	1.2	36
80	Novel insights into the mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella. Scientific Reports, 2018, 8, 1787.	1.6	36
81	Measure for measure in the control of type III secretion hook and needle length. Molecular Microbiology, 2005, 56, 303-308.	1.2	35
82	Structural and Functional Comparison of Salmonella Flagellar Filaments Composed of FljB and FliC. Biomolecules, 2020, 10, 246.	1.8	35
83	The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics (Nagoya-shi, Japan), 2013, 9, 173-181.	0.4	35
84	Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries. Nature Communications, 2021, 12, 4223.	5.8	34
85	Structure of the molecular bushing of the bacterial flagellar motor. Nature Communications, 2021, 12, 4469.	5.8	33
86	Role of EscP (Orf16) in Injectisome Biogenesis and Regulation of Type III Protein Secretion in Enteropathogenic Escherichia coli. Journal of Bacteriology, 2012, 194, 6029-6045.	1.0	32
87	Structural stability of flagellin subunit affects the rate of flagellin export in the absence of FliS chaperone. Molecular Microbiology, 2016, 102, 405-416.	1.2	32
88	Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor. Scientific Reports, 2017, 7, 46081.	1.6	32
89	In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly. MBio, 2018, 9, .	1.8	32
90	The role of intrinsically disordered Câ€ŧerminal region of FliK in substrate specificity switching of the bacterial flagellar type III export apparatus. Molecular Microbiology, 2017, 105, 572-588.	1.2	30

Τοήγι Μιναμινό

#	Article	IF	CITATIONS
91	Molecular Organization and Assembly of the Export Apparatus of Flagellar Type III Secretion Systems. Current Topics in Microbiology and Immunology, 2019, 427, 91-107.	0.7	29
92	Genetic analysis of the bacterial hook-capping protein FlgD responsible for hook assembly. Microbiology (United Kingdom), 2011, 157, 1354-1362.	0.7	28
93	Coupling between Switching Regulation and Torque Generation in Bacterial Flagellar Motor. Physical Review Letters, 2012, 108, 178105.	2.9	28
94	Structural Properties of FliH, an ATPase Regulatory Component of the Salmonella Type III Flagellar Export Apparatus. Journal of Molecular Biology, 2002, 322, 281-290.	2.0	27
95	Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. Journal of Biochemistry, 2013, 153, 441-451.	0.9	27
96	Straight and rigid flagellar hook made by insertion of the FlgG specific sequence into FlgE. Scientific Reports, 2017, 7, 46723.	1.6	27
97	Role of a Conserved Prolyl Residue (Pro173) of MotA in the Mechanochemical Reaction Cycle of the Proton-Driven Flagellar Motor of Salmonella. Journal of Molecular Biology, 2009, 393, 300-307.	2.0	24
98	Rearrangements of αâ€helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export. Molecular Microbiology, 2016, 101, 656-670.	1.2	23
99	The role of a cytoplasmic loop of MotA in loadâ€dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Molecular Microbiology, 2017, 106, 646-658.	1.2	23
100	Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex. MBio, 2019, 10, .	1.8	23
101	Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. MBio, 2021, 12, .	1.8	20
102	Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function. Biophysics (Nagoya-shi, Japan), 2013, 9, 63-72.	0.4	19
103	Fuel of the Bacterial Flagellar Type III Protein Export Apparatus. Methods in Molecular Biology, 2017, 1593, 3-16.	0.4	19
104	Role of the Nâ€ŧerminal domain of FliI ATPase in bacterial flagellar protein export. FEBS Letters, 2009, 583, 743-748.	1.3	18
105	Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor. Biochemical and Biophysical Research Communications, 2018, 496, 12-17.	1.0	17
106	FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus. Journal of Bacteriology, 2020, 202, .	1.0	16
107	The flexible linker of the secreted FliK ruler is required for export switching of the flagellar protein export apparatus. Scientific Reports, 2020, 10, 838.	1.6	16
108	The FlhA linker mediates flagellar protein export switching during flagellar assembly. Communications Biology, 2021, 4, 646.	2.0	16

#	Article	IF	CITATIONS
109	Isolation of Salmonella Mutants Resistant to the Inhibitory Effect of Salicylidene acylhydrazides on Flagella-Mediated Motility. PLoS ONE, 2013, 8, e52179.	1.1	16
110	Weak Interactions between Salmonella enterica FlhB and Other Flagellar Export Apparatus Proteins Govern Type III Secretion Dynamics. PLoS ONE, 2015, 10, e0134884.	1.1	15
111	A triangular loop of domain D1 of FlgE is essential for hook assembly but not for the mechanical function. Biochemical and Biophysical Research Communications, 2018, 495, 1789-1794.	1.0	14
112	The FlgN chaperone activates the Na+-driven engine of the Salmonella flagellar protein export apparatus. Communications Biology, 2021, 4, 335.	2.0	13
113	A positive charge region of Salmonella Flil is required for ATPase formation and efficient flagellar protein export. Communications Biology, 2021, 4, 464.	2.0	12
114	Functional Defect and Restoration of Temperature-Sensitive Mutants of FlhA, a Subunit of the Flagellar Protein Export Apparatus. Journal of Molecular Biology, 2012, 415, 855-865.	2.0	11
115	Effect of a clockwiseâ€locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor. Genes To Cells, 2018, 23, 241-247.	0.5	11
116	Mutational analysis of the Câ€ŧerminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in <i>Salmonella</i> . Genes To Cells, 2019, 24, 408-421.	0.5	11
117	Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero. Molecular Microbiology, 2020, 113, 755-765.	1.2	11
118	Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2026587118.	3.3	11
119	Multiple Roles of Flagellar Export Chaperones for Efficient and Robust Flagellar Filament Formation in Salmonella. Frontiers in Microbiology, 2021, 12, 756044.	1.5	11
120	Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Frontiers in Microbiology, 2022, 13, .	1.5	11
121	Genetic Analysis of the Salmonella FliE Protein That Forms the Base of the Flagellar Axial Structure. MBio, 2021, 12, e0239221.	1.8	10
122	Crystallization and preliminary X-ray analysis of FliJ, a cytoplasmic component of the flagellar type III protein-export apparatus fromSalmonellasp Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 47-50.	0.7	9
123	In Vitro Autonomous Construction of the Flagellar Axial Structure in Inverted Membrane Vesicles. Biomolecules, 2020, 10, 126.	1.8	9
124	Dynamic exchange of two types of stator units in Bacillus subtilis flagellar motor in response to environmental changes. Computational and Structural Biotechnology Journal, 2020, 18, 2897-2907.	1.9	8
125	Measurements of Free-swimming Speed of Motile Salmonella Cells in Liquid Media. Bio-protocol, 2017, 7, e2093.	0.2	8
126	Functional divergence of flagellar type III secretion system: A case study in a non-flagellated, predatory bacterium. Computational and Structural Biotechnology Journal, 2020, 18, 3368-3376.	1.9	7

Τοηγί Μιναμινό

#	Article	IF	CITATIONS
127	Architecture and Assembly of the Bacterial Flagellar Motor Complex. Sub-Cellular Biochemistry, 2021, 96, 297-321.	1.0	7
128	Purification, crystallization and preliminary X-ray analysis of FliT, a bacterial flagellar substrate-specific export chaperone. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 825-828.	0.7	5
129	Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics (Nagoya-shi, Japan), 2014, 10, 35-41.	0.4	5
130	Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein-export apparatus. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1215-1218.	0.4	4
131	Bacterial Intracellular Sodium Ion Measurement using CoroNa Green. Bio-protocol, 2017, 7, e2092.	0.2	4
132	Crystallization and preliminary X-ray analysis ofSalmonellaFlil, the ATPase component of the type III flagellar protein-export apparatus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 973-975.	0.7	3
133	<i>Salmonella</i> Flagellum. , 2018, , .		3
134	GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Salmonella. Biomolecules, 2020, 10, 1255.	1.8	3
135	Crystallization and preliminary X-ray analysis of the FliH–FliI complex responsible for bacterial flagellar type III protein export. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1311-1314.	0.7	2
136	Stoichiometry and Turnover of the Stator and Rotor. Methods in Molecular Biology, 2017, 1593, 203-213.	0.4	2
137	Electron Microscopy of Motor Structure and Possible Mechanisms. , 2018, , 1-8.		1
138	Title is missing!. Kagaku To Seibutsu, 2011, 49, 22-31.	0.0	0
139	Determination of Local pH Differences within Single Bacterial Cell. Seibutsu Butsuri, 2017, 57, 296-298.	0.0	0
140	Recent Advances in the Bacterial Flagellar Motor Study. Biomolecules, 2021, 11, 741.	1.8	0
141	Determination of Local pH Differences within Living Salmonella Cells by High-resolution pH Imaging Based on pH-sensitive GFP Derivative, pHluorin(M153R), Bio-protocol, 2017, 7, e2529.	0.2	0