Andrew J Monaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6305260/publications.pdf

Version: 2024-02-01

104 papers 5,764 citations

71102 41 h-index 72 g-index

109 all docs

109 does citations

109 times ranked 7889 citing authors

#	Article	IF	CITATIONS
1	Hydroclimatic changes in Alaska portrayed by a high-resolution regional climate simulation. Climatic Change, $2021, 164, 1.$	3.6	2
2	Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city. Climatic Change, 2021 , 164 , 1 .	3.6	15
3	Modeling future climate suitability for the western blacklegged tick, Ixodes pacificus, in California with an emphasis on land access and ownership. Ticks and Tick-borne Diseases, 2021, 12, 101789.	2.7	9
4	LYMESIM 2.0: An Updated Simulation of Blacklegged Tick (Acari: Ixodidae) Population Dynamics and Enzootic Transmission of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Journal of Medical Entomology, 2020, 57, 715-727.	1.8	15
5	How will rainfall change over Hawaiâ€~i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bulletin of Atmospheric Science and Technology, 2020, 1, 459-490.	0.9	15
6	Intersecting vulnerabilities: climatic and demographic contributions to future population exposure to Aedes-borne viruses in the United States. Environmental Research Letters, 2020, 15, 084046.	5.2	9
7	Convection-Permitting Regional Climate Simulations in the Arabian Gulf Region Using WRF Driven by Bias-Corrected GCM Data. Journal of Climate, 2020, 33, 7787-7815.	3.2	10
8	A Case-Crossover Analysis of Indoor Heat Exposure on Mortality and Hospitalizations among the Elderly in Houston, Texas. Environmental Health Perspectives, 2020, 128, 127007.	6.0	13
9	Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Computational Biology, 2019, 15, e1007369.	3.2	14
10	An Expansion of the User Support Services for the Research Computing Group at the University of Colorado Boulder. , 2019, , .		1
11	Characterizing the role of socioeconomic pathways in shaping future urban heat-related challenges. Science of the Total Environment, 2019, 695, 133941.	8.0	27
12	Urban heat and air pollution: A framework for integrating population vulnerability and indoor exposure in health risk analyses. Science of the Total Environment, 2019, 660, 715-723.	8.0	72
13	Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 806-820.	3.9	16
14	Improving regional cyberinfrastructure services through collaboration., 2019,,.		2
15	High-Resolution Historical Climate Simulations over Alaska. Journal of Applied Meteorology and Climatology, 2018, 57, 709-731.	1.5	17
16	Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera:) Tj ETQq0 0 0 267.) rgBT /Ove 2.5	erlock 10 Tf 5 45
17	Modeling Climate Suitability of the Western Blacklegged Tick in California. Journal of Medical Entomology, 2018, 55, 1133-1142.	1.8	18
18	The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change, 2018, 146, 487-500.	3.6	55

#	Article	IF	CITATIONS
19	Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Climatic Change, 2018, 146, 471-485.	3.6	47
20	The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change, 2018, 146, 287-301.	3.6	27
21	Health risks of warming of 1.5 °C, 2 °C, and higher, above pre-industrial temperatures. Environmental Research Letters, 2018, 13, 063007.	5. 2	65
22	The impact of heat and impaired kidney function on productivity of Guatemalan sugarcane workers. PLoS ONE, 2018, 13, e0205181.	2.5	33
23	Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique. Scientific Reports, 2018, 8, 9238.	3.3	8
24	An Acarological Risk Model Predicting the Density and Distribution of Host-Seeking Ixodes scapularis Nymphs in Minnesota. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1671-1682.	1.4	18
25	A Simple Model to Predict the Potential Abundance of Aedes aegypti Mosquitoes One Month in Advance. American Journal of Tropical Medicine and Hygiene, 2018, 100, 434-437.	1.4	6
26	Host-Seeking Phenology oflxodes pacificus (Acari: Ixodidae) Nymphs in Northwestern California in Relation to Calendar Week, Woodland Type, and Weather Conditions. Journal of Medical Entomology, 2017, 54, 125-131.	1.8	3
27	Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 2017, 5, 14.	2.8	75
28	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	27.8	298
29	Changing weather and climate in Northern Ghana: comparison of local perceptions with meteorological and land cover data. Regional Environmental Change, 2017, 17, 915-928.	2.9	29
30	Spatiotemporal multiresolution modeling to infill missing areal data and enhance the temporal frequency of infrared satellite images. Environmetrics, 2017, 28, e2466.	1.4	2
31	<i>Aedes aegypti</i> (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico. Journal of Medical Entomology, 2017, 54, 204-211.	1.8	22
32	Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. Journal of Medical Entomology, 2017, 54, 1605-1614.	1.8	72
33	Response: The Geographic Distribution of Ixodes scapularis (Acari: Ixodidae) Revisited: The Importance of Assumptions About Error Balance. Journal of Medical Entomology, 2017, 54, 1104-1106.	1.8	12
34	WHATCH'EM: A Weather-Driven Energy Balance Model for Determining Water Height and Temperature in Container Habitats for Aedes aegypti. Earth Interactions, 2016, 20, 1-31.	1.5	3
35	Estimating the Risk of Domestic Water Source Contamination Following Precipitation Events. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1403-1406.	1.4	12
36	Willingness to Pay for Mosquito Control in Key West, Florida and Tucson, Arizona. American Journal of Tropical Medicine and Hygiene, 2016, 94, 775-779.	1.4	9

#	Article	IF	CITATIONS
37	A first satellite-based observational assessment of urban thermal anisotropy. Remote Sensing of Environment, 2016, 181, 111-121.	11.0	66
38	Modeling the Geographic Distribution of <i>Ixodes scapularis </i> Ixodes pacificus (Acari:) Tj ETQq0 0	0 rgBT/Ove	erlogk 10 Tf 50
39	On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States. PLOS Currents, 2016, 8, .	1.4	106
40	Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas. PLoS ONE, 2016, 11, e0148890.	2. 5	22
41	Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat Conditions Using Satellite-Derived Data. Journal of Applied Meteorology and Climatology, 2015, 54, 2245-2259.	1.5	11
42	Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR. PLoS Neglected Tropical Diseases, 2015, 9, e0004002.	3.0	67
43	Climate change influences on the annual onset of Lyme disease in the United States. Ticks and Tick-borne Diseases, 2015, 6, 615-622.	2.7	50
44	An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls. Journal of the American Statistical Association, 2015, 110, 123-135.	3.1	8
45	Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol. BMC Public Health, 2015, 15, 126.	2.9	37
46	Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission. Parasites and Vectors, 2015 , 8 , 11 .	2. 5	33
47	Meteorological Conditions Associated with Increased Incidence of West Nile Virus Disease in the United States, 2004–2012. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1013-1022.	1.4	73
48	Awareness and Support of Release of Genetically Modified "Sterile―Mosquitoes, Key West, Florida, USA. Emerging Infectious Diseases, 2015, 21, 320-324.	4.3	27
49	Two methods for estimating limits to large-scale wind power generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11169-11174.	7.1	57
50	Post Outbreak Review: Dengue Preparedness and Response in Key West, Florida. American Journal of Tropical Medicine and Hygiene, 2015, 93, 397-400.	1.4	9
51	Modeling the Present and Future Geographic Distribution of the Lone Star Tick, Amblyomma americanum (lxodida: lxodidae), in the Continental United States. American Journal of Tropical Medicine and Hygiene, 2015, 93, 875-890.	1.4	110
52	Wind resource estimates with an analog ensemble approach. Renewable Energy, 2015, 74, 761-773.	8.9	61
53	Projected impact of twenty-first century ENSO changes on rainfall over Central America and northwest South America from CMIP5 AOGCMs. Climate Dynamics, 2015, 44, 1329-1349.	3.8	31
54	Interactions between urbanization, heat stress, and climate change. Climatic Change, 2015, 129, 525-541.	3.6	240

#	Article	IF	Citations
55	Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model temperature simulations with MODIS. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6376-6392.	3.3	37
56	The Impact of Climate Change on Meningitis in Northwest Nigeria: An Assessment Using CMIP5 Climate Model Simulations. Weather, Climate, and Society, 2014, 6, 371-379.	1.1	17
57	Climate Influences on Meningitis Incidence in Northwest Nigeria. Weather, Climate, and Society, 2014, 6, 62-76.	1.1	14
58	Regional Assessment of Sampling Techniques for More Efficient Dynamical Climate Downscaling. Journal of Climate, 2014, 27, 1524-1538.	3.2	7
59	Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 1825-1837.	2.7	23
60	Intra-Annual Changes in Abundance of <i>Aedes</i> (<i>Stegomyia</i>) <i>aegypti</i> and <i>Aedes</i> (<i>Ochlerotatus</i>) <i>epactius</i> (Diptera:	TjıÆTQq0	0 ซิ rgBT /Oง
61	Meteorological Influences on the Seasonality of Lyme Disease in the United States. American Journal of Tropical Medicine and Hygiene, 2014, 90, 486-496.	1.4	53
62	How can we use MODIS land surface temperature to validate long-term urban model simulations?. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3185-3201.	3.3	57
63	The Impact of Temperature on the Bionomics of <i>Aedes </i> (<i>Stegomyia </i>) <i>aegypti </i> , With Special Reference to the Cool Geographic Range Margins. Journal of Medical Entomology, 2014, 51, 496-516.	1.8	129
64	Characterizing urban vulnerability to heat stress using a spatially varying coefficient model. Spatial and Spatio-temporal Epidemiology, 2014, 8, 23-33.	1.7	44
65	Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico. ISPRS International Journal of Geo-Information, 2014, 3, 732-749.	2.9	28
66	Dynamics of the Foehn Mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1615-1631.	2.7	41
67	Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 2013, 6, 139-145.	12.9	328
68	Overlapping Interests: The Impact of Geographic Coordinate Assumptions on Limited-Area Atmospheric Model Simulations. Monthly Weather Review, 2013, 141, 2120-2127.	1.4	6
69	Selecting Representative Days for More Efficient Dynamical Climate Downscaling: Application to Wind Energy. Journal of Applied Meteorology and Climatology, 2013, 52, 47-63.	1.5	19
70	A Regional Climatography of West Nile, Uganda, to Support Human Plague Modeling. Journal of Applied Meteorology and Climatology, 2012, 51, 1201-1221.	1.5	23
71	The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México. American Journal of Tropical Medicine and Hygiene, 2012, 87, 902-909.	1.4	100
72	<l>Aedes</l> (<l>Ochlerotatus</l>) <l>epactius</l> Along an Elevation and Climate Gradient in Veracruz and Puebla States, MA©xico. Journal of Medical Entomology, 2012, 49, 1244-1253.	1.8	7

#	Article	IF	CITATIONS
73	Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda. American Journal of Tropical Medicine and Hygiene, 2012, 86, 514-523.	1.4	23
74	Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice. Climate Dynamics, 2012, 39, 1841-1857.	3.8	54
75	The Role of Weather in Meningitis Outbreaks in Navrongo, Ghana: A Generalized Additive Modeling Approach. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17, 442-460.	1.4	46
76	Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data. Earth and Planetary Science Letters, 2012, 321-322, 74-80.	4.4	28
77	Addressing climate challenges in developing countries. Eos, 2012, 93, 145-145.	0.1	0
78	Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus. PLoS ONE, 2012, 7, e35598.	2.5	40
79	Improvement of Disease Prediction and Modeling through the Use of Meteorological Ensembles: Human Plague in Uganda. PLoS ONE, 2012, 7, e44431.	2.5	36
80	Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	415
81	An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses*. Journal of Climate, 2011, 24, 4189-4209.	3.2	241
82	Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 2010, 30, 633-642.	3.5	214
83	Foehn Winds in the McMurdo Dry Valleys, Antarctica: The Origin of Extreme Warming Events*. Journal of Climate, 2010, 23, 3577-3598.	3.2	81
84	Global Distribution and Characteristics of Diurnally Varying Low-Level Jets. Journal of Climate, 2010, 23, 5041-5064.	3.2	133
85	Global Precipitation Extremes Associated with Diurnally Varying Low-Level Jets. Journal of Climate, 2010, 23, 5065-5084.	3. 2	56
86	Climate and Melting Variability in Antarctica. Eos, 2010, 91, 1.	0.1	1
87	Historical SAM Variability. Part II: Twentieth-Century Variability and Trends from Reconstructions, Observations, and the IPCC AR4 Models*. Journal of Climate, 2009, 22, 5346-5365.	3.2	162
88	An updated Antarctic melt record through 2009 and its linkages to highâ€latitude and tropical climate variability. Geophysical Research Letters, 2009, 36, .	4.0	59
89	Global warming at the poles. Nature Geoscience, 2008, 1, 728-729.	12.9	6
90	Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophysical Research Letters, 2008, 35, .	4.0	40

#	Article	IF	CITATIONS
91	Recent variability and trends of Antarctic nearâ€surface temperature. Journal of Geophysical Research, 2008, 113, .	3.3	94
92	Correction to "Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models― Geophysical Research Letters, 2008, 35, .	4.0	0
93	Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR. Monthly Weather Review, 2008, 136, 2923-2944.	1.4	15
94	ADVANCES IN DESCRIBING RECENT ANTARCTIC CLIMATE VARIABILITY. Bulletin of the American Meteorological Society, 2008, 89, 1295-1306.	3.3	27
95	Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1683-1708.	3.4	78
96	Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, at high elevations. Annals of Glaciology, 2006, 43, 351-360.	1.4	16
97	Insignificant Change in Antarctic Snowfall Since the International Geophysical Year. Science, 2006, 313, 827-831.	12.6	207
98	The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System*. Journal of Climate, 2005, 18, 1174-1189.	3.2	98
99	Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)*. Monthly Weather Review, 2005, 133, 579-603.	1.4	99
100	Modeling the ENSO Modulation of Antarctic Climate in the Late 1990s with the Polar MM5*. Journal of Climate, 2004, 17, 109-132.	3.2	56
101	Distribution and Characteristics of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea*. Monthly Weather Review, 2003, 131, 289-301.	1.4	76
102	Real-Time Mesoscale Modeling Over Antarctica: The Antarctic Mesoscale Prediction System*. Bulletin of the American Meteorological Society, 2003, 84, 1533-1546.	3.3	121
103	Performance of Weather Forecast Models in the Rescue of Dr. Ronald Shemenski from the South Pole in April 2001*. Weather and Forecasting, 2003, 18, 142-160.	1.4	17
104	Antarctic Mesoscale Prediction System (AMPS): A Case Study from the 2000–01 Field Season*. Monthly Weather Review, 2003, 131, 412-434.	1.4	35