Helge Grosshans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6304985/publications.pdf

Version: 2024-02-01

60 papers

7,784 citations

30 h-index 59 g-index

73 all docs

73 docs citations

times ranked

73

10309 citing authors

#	Article	IF	CITATIONS
1	Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans. Nature Communications, 2022, $13,\ldots$	5.8	13
2	Gene expression oscillations in C. elegans underlie a new developmental clock. Current Topics in Developmental Biology, 2021, 144, 19-43.	1.0	10
3	Protease-mediated processing of Argonaute proteins controls small RNA association. Molecular Cell, 2021, 81, 2388-2402.e8.	4.5	13
4	H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nature Cell Biology, 2021, 23, 1163-1175.	4.6	37
5	Developmental function and state transitions of a gene expression oscillator in <i>Caenorhabditis elegans</i> . Molecular Systems Biology, 2020, 16, e9498.	3.2	53
6	A branched heterochronic pathway directs juvenile-to-adult transition through two LIN-29 isoforms. ELife, 2020, 9, .	2.8	13
7	The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes and Development, 2019, 33, 1221-1235.	2.7	31
8	<i>let-7</i> coordinates the transition to adulthood through a single primary and four secondary targets. Life Science Alliance, 2019, 2, e201900335.	1.3	33
9	Timing mechanism of sexually dimorphic nervous system differentiation. ELife, 2019, 8, .	2.8	40
10	Turning the table on miRNAs. Nature Structural and Molecular Biology, 2018, 25, 195-197.	3.6	6
11	Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition. Nature Communications, 2018, 9, 1549.	5.8	35
12	An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. Nucleic Acids Research, 2018, 46, 3259-3269.	6.5	62
13	LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms. Molecular Cell, 2017, 65, 476-489.e4.	4.5	71
14	Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Research, 2017, 45, gkw1350.	6.5	64
15	Two distinct transcription termination modes dictated by promoters. Genes and Development, 2017, 31, 1870-1879.	2.7	35
16	XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006313.	1.5	15
17	Structural basis and function of XRN2 binding by XTB domains. Nature Structural and Molecular Biology, 2016, 23, 164-171.	3.6	17
18	The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Research, 2015, 43, 3344-3357.	6.5	22

#	Article	IF	CITATIONS
19	The let-7 microRNA Directs Vulval Development through a Single Target. Developmental Cell, 2015, 32, 335-344.	3.1	121
20	Potent degradation of neuronal mi <scp>RNA</scp> s induced by highly complementary targets. EMBO Reports, 2015, 16, 500-511.	2.0	165
21	A genetic interactome of the let-7 microRNA in C. elegans. Developmental Biology, 2015, 401, 276-286.	0.9	15
22	Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. Methods, 2015, 85, 75-89.	1.9	35
23	Engineering of a conditional allele reveals multiple roles of XRN2 in <i>Caenorhabditis elegans</i> development and substrate specificity in microRNA turnover. Nucleic Acids Research, 2014, 42, 4056-4067.	6.5	34
24	PAXT-1 Promotes XRN2 Activity by Stabilizing It through a Conserved Domain. Molecular Cell, 2014, 53, 351-360.	4.5	32
25	Extensive Oscillatory Gene Expression during C.Âelegans Larval Development. Molecular Cell, 2014, 53, 380-392.	4.5	188
26	The Decapping Scavenger Enzyme DCS-1 Controls MicroRNA Levels in Caenorhabditis elegans. Molecular Cell, 2013, 50, 281-287.	4.5	57
27	Targeted Heritable Mutation and Gene Conversion by Cas9-CRISPR in <i>Caenorhabditis elegans</i> Genetics, 2013, 195, 1173-1176.	1.2	95
28	The multifunctional RNase XRN2. Biochemical Society Transactions, 2013, 41, 825-830.	1.6	46
29	LIN-41/TRIM71: emancipation of a miRNA target. Genes and Development, 2013, 27, 581-589.	2.7	55
30	MicroRNA turnover: when, how, and why. Trends in Biochemical Sciences, 2012, 37, 436-446.	3.7	298
31	The Liver-Specific MicroRNA miR-122: Biology and Therapeutic Potential. , 2011, , 221-238.		26
32	Target-Mediated Protection of Endogenous MicroRNAs in C. elegans. Developmental Cell, 2011, 20, 388-396.	3.1	150
33	The type II poly(A)-binding protein PABP-2 genetically interacts with the let-7 miRNA and elicits heterochronic phenotypes in Caenorhabditis elegans. Nucleic Acids Research, 2011, 39, 5647-5657.	6.5	16
34	MicroRNA Biogenesis Takes Another Single Hit from Microsatellite Instability. Cancer Cell, 2010, 18, 295-297.	7.7	11
35	The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO Journal, 2010, 29, 1830-1839.	3.5	72
36	A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nature Methods, 2010, 7, 837-842.	9.0	80

#	Article	IF	Citations
37	MicroRNAs in C. elegans Development. Modecular Medicine and Medicinal, 2010, , 51-93.	0.4	O
38	MicroRNases and the Regulated Degradation of Mature Animal miRNAs. Advances in Experimental Medicine and Biology, 2010, 700, 140-155.	0.8	25
39	Translational Control of Endogenous MicroRNA Target Genes in C. elegans. Progress in Molecular and Subcellular Biology, 2010, 50, 21-40.	0.9	1
40	Regulation of microRNAs. Preface. Advances in Experimental Medicine and Biology, 2010, 700, v-vi.	0.8	0
41	MicroRNAses and the regulated degradation of mature animal miRNAs. Advances in Experimental Medicine and Biology, 2010, 700, 140-55.	0.8	12
42	Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends in Biotechnology, 2009, 27, 27-36.	4.9	97
43	Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO Journal, 2009, 28, 213-222.	3.5	121
44	Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature, 2009, 461, 546-549.	13.7	331
45	The expanding world of small RNAs. Nature, 2008, 451, 414-416.	13.7	246
46	let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 2008, 14, 400-409.	3.5	539
47	Proteomics Joins the Search for MicroRNA Targets. Cell, 2008, 134, 560-562.	13.5	41
48	The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle, 2008, 7, 3083-3090.	1.3	53
49	miRNA, piRNA, siRNA—kleine wiener ribonukleinsÃ ¤ ren. BioEssays, 2007, 29, 940-943.	1.2	2
50	RAS Is Regulated by the let-7 MicroRNA Family. Cell, 2005, 120, 635-647.	13.5	3,291
51	The Temporal Patterning MicroRNA let-7 Regulates Several Transcription Factors at the Larval to Adult Transition in C. elegans. Developmental Cell, 2005, 8, 321-330.	3.1	231
52	Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Reports, 2003, 4, 1156-1162.	2.0	71
53	Micro-RNAs. Journal of Cell Biology, 2002, 156, 17-22.	2.3	132
54	Nuclear Export of tRNA. Results and Problems in Cell Differentiation, 2002, 35, 115-131.	0.2	15

#	ARTICLE	IF	CITATION
55	The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO Journal, 2001, 20, 6889-6898.	3.5	68
56	Biogenesis of the Signal Recognition Particle (Srp) Involves Import of Srp Proteins into the Nucleolus, Assembly with the Srp-Rna, and Xpo1p-Mediated Export. Journal of Cell Biology, 2001, 153, 745-762.	2.3	128
57	Pus1p-dependent tRNA Pseudouridinylation Becomes Essential When tRNA Biogenesis Is Compromised in Yeast. Journal of Biological Chemistry, 2001, 276, 46333-46339.	1.6	46
58	Gene therapy – when a simple concept meets a complex reality. Functional and Integrative Genomics, 2000, 1, 142-145.	1.4	10
59	Review: Transport of tRNA out of the Nucleus—Direct Channeling to the Ribosome?. Journal of Structural Biology, 2000, 129, 288-294.	1.3	65
60	An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes and Development, 2000, 14, 830-840.	2.7	156