
David Finkelstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6303921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Compound ATH434 Prevents Alpha-Synuclein Toxicity in a Murine Model of Multiple System Atrophy. Journal of Parkinson's Disease, 2022, 12, 105-115.	2.8	9
2	The Placebo Response in Double-Blind Randomised Trials Evaluating Regenerative Therapies for Parkinson's Disease: A Systematic Review and Meta-Analysis. Journal of Parkinson's Disease, 2022, 12, 759-771.	2.8	2
3	Gastrointestinal Dysfunction in Parkinson's Disease: Current and Potential Therapeutics. Journal of Personalized Medicine, 2022, 12, 144.	2.5	14
4	Clinical Sphingolipids Pathway in Parkinson's Disease: From GCase to Integrated-Biomarker Discovery. Cells, 2022, 11, 1353.	4.1	7
5	Characterization of retinal function and structure in the MPTP murine model of Parkinson's disease. Scientific Reports, 2022, 12, 7610.	3.3	6
6	Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. International Journal of Molecular Sciences, 2022, 23, 6216.	4.1	25
7	A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1841-1861.	2.8	6
8	The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson's disease. Scientific Reports, 2021, 11, 7934.	3.3	18
9	Analysis of morphological and neurochemical changes in subthalamic nucleus neurons in response to a unilateral 6-OHDA lesion of the substantia nigra in adult rats. IBRO Neuroscience Reports, 2021, 10, 96-103.	1.6	Ο
10	α-Synuclein E46K Mutation and Involvement of Oxidative Stress in a Drosophila Model of Parkinson's Disease. Parkinson's Disease, 2021, 2021, 1-12.	1.1	8
11	ATH434 Reverses Colorectal Dysfunction in the A53T Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1821-1832.	2.8	5
12	Therapeutic potential of iron modulating drugs in a mouse model of multiple system atrophy. Neurobiology of Disease, 2021, 159, 105509.	4.4	8
13	Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and Alters Tau Pathology. Neurotherapeutics, 2021, 18, 1081-1094.	4.4	17
14	Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chemical Neuroscience, 2021, 12, 4224-4235.	3.5	7
15	Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Frontiers in Neuroscience, 2021, 15, 794809.	2.8	3
16	Misfolded α-synuclein causes hyperactive respiration without functional deficit in live neuroblastoma cells. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	14
17	Exercise and physical activity for people with Progressive Supranuclear Palsy: a systematic review. Clinical Rehabilitation, 2020, 34, 23-33.	2.2	15
18	Chronic isolation stress is associated with increased colonic and motor symptoms in the A53T mouse model of Parkinson's disease. Neurogastroenterology and Motility, 2020, 32, e13755.	3.0	5

#	Article	IF	CITATIONS
19	Regional iron distribution and soluble ferroprotein profiles in the healthy human brain. Progress in Neurobiology, 2020, 186, 101744.	5.7	25
20	Characterising the brain metalloproteome in Down syndrome patients with concomitant Alzheimer's pathology. Metallomics, 2020, 12, 114-132.	2.4	0
21	Fibrillar α-synuclein toxicity depends on functional lysosomes. Journal of Biological Chemistry, 2020, 295, 17497-17513.	3.4	30
22	Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. Journal of Neuroscience Research, 2020, 98, 1889-1904.	2.9	10
23	PrPSc Oligomerization Appears Dynamic, Quickly Engendering Inherent M1000 Acute Synaptotoxicity. Biophysical Journal, 2020, 119, 128-141.	0.5	1
24	Reduced striatal vesicular monoamine transporter 2 in REM sleep behavior disorder: imaging prodromal parkinsonism. Scientific Reports, 2020, 10, 17631.	3.3	10
25	Parkinsonism as a Third Wave of the COVID-19 Pandemic?. Journal of Parkinson's Disease, 2020, 10, 1343-1353.	2.8	50
26	An intact membrane is essential for small extracellular vesicleâ€induced modulation of αâ€synuclein fibrillization. Journal of Extracellular Vesicles, 2020, 10, e12034.	12.2	7
27	Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterology and Motility, 2020, 32, e13893.	3.0	17
28	The Long Isoform of Intersectin-1 Has a Role in Learning and Memory. Frontiers in Behavioral Neuroscience, 2020, 14, 24.	2.0	5
29	Distribution of Parkinson's disease associated RAB39B in mouse brain tissue. Molecular Brain, 2020, 13, 52.	2.6	19
30	Migration and Differentiation of Neural Stem Cells Diverted From the Subventricular Zone by an Injectable Self-Assembling β-Peptide Hydrogel. Frontiers in Bioengineering and Biotechnology, 2019, 7, 315.	4.1	31
31	<scp>l</scp> â€3,4â€dihydroxyphenylalanine (<scp>l</scp> â€DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alphaâ€synuclein mouse models of Parkinson's disease. Journal of Neurochemistry, 2019, 150, 88-106.	3.9	24
32	The role of lipids in α-synuclein misfolding and neurotoxicity. Journal of Biological Chemistry, 2019, 294, 9016-9028.	3.4	55
33	Early existence and biochemical evolution characterise acutely synaptotoxic PrPSc. PLoS Pathogens, 2019, 15, e1007712.	4.7	13
34	α-Synuclein Regulates Development and Function of Cholinergic Enteric Neurons in the Mouse Colon. Neuroscience, 2019, 423, 76-85.	2.3	13
35	Metal chaperones: a novel therapeutic strategy for brain injury?. Brain Injury, 2019, 33, 305-312.	1.2	5
36	Acute Neurotoxicity Models of Prion Disease. ACS Chemical Neuroscience, 2018, 9, 431-445.	3.5	8

David Finkelstein

#	Article	IF	CITATIONS
37	LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, 175, 429-441.e16.	28.9	242
38	Targeting metals rescues the phenotype in an animal model of tauopathy. Metallomics, 2018, 10, 1339-1347.	2.4	20
39	Prion acute synaptotoxicity is largely driven by protease-resistant PrPSc species. PLoS Pathogens, 2018, 14, e1007214.	4.7	11
40	Trehalose elevates brain zinc levels following controlled cortical impact in a mouse model of traumatic brain injury. Metallomics, 2018, 10, 846-853.	2.4	13
41	Modulating Protein Phosphatase 2A Rescues Disease Phenotype in Neurodegenerative Tauopathies. ACS Chemical Neuroscience, 2018, 9, 2731-2740.	3.5	16
42	Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104, 34-48.	3.8	260
43	Age modulates the injury-induced metallomic profile in the brain. Metallomics, 2017, 9, 402-410.	2.4	21
44	Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson's disease. Metallomics, 2017, 9, 852-864.	2.4	23
45	In vivo prion models and the disconnection between transmissibility and neurotoxicity. Ageing Research Reviews, 2017, 36, 156-164.	10.9	7
46	Pramipexole restores depressed transmission in the ventral hippocampus following MPTP-lesion. Scientific Reports, 2017, 7, 44426.	3.3	16
47	Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 1.	5.3	60
48	The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 53.	5.2	77
49	Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Molecular Psychiatry, 2017, 22, 396-406.	7.9	66
50	Trehalose Improves Cognition in the Transgenic Tg2576 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 549-560.	2.6	68
51	Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS ONE, 2017, 12, e0183683.	2.5	39
52	Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. Journal of Alzheimer's Disease, 2016, 51, 471-487.	2.6	37
53	Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson's substantia nigra. Signal Transduction and Targeted Therapy, 2016, 1, 16015.	17.1	36
54	N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington's disease. Human Molecular Genetics, 2016, 25, ddw144.	2.9	34

#	Article	IF	CITATIONS
55	Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Materials, 2016, 8, e304-e304.	7.9	65
56	Metals in Alzheimer's and Parkinson's Disease: Relevance to Dementia with Lewy Bodies. Journal of Molecular Neuroscience, 2016, 60, 279-288.	2.3	23
57	Pathogenic mechanisms of prion protein, amyloidâ€Ĵ² and αâ€synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. Journal of Neurochemistry, 2016, 139, 162-180.	3.9	77
58	Typeâ€l interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia, 2016, 64, 1590-1604.	4.9	71
59	Restoration of intestinal function in an MPTP model of Parkinson's Disease. Scientific Reports, 2016, 6, 30269.	3.3	25
60	A time-course analysis of changes in cerebral metal levels following a controlled cortical impact. Metallomics, 2016, 8, 193-200.	2.4	36
61	Effects of Neonatal Iron Feeding and Chronic Clioquinol Administration on the Parkinsonian Human A53T Transgenic Mouse. ACS Chemical Neuroscience, 2016, 7, 360-366.	3.5	32
62	Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice. ACS Chemical Neuroscience, 2016, 7, 119-129.	3.5	64
63	Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. PLoS ONE, 2016, 11, e0151589.	2.5	80
64	Serotonergic markers in Parkinson's disease and levodopaâ€induced dyskinesias. Movement Disorders, 2015, 30, 796-804.	3.9	32
65	Cell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain . Biomatter, 2015, 5, e1005527.	2.6	51
66	Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chemical Science, 2015, 6, 5383-5393.	7.4	69
67	Metal chaperones prevent zinc-mediated cognitive decline. Neurobiology of Disease, 2015, 81, 196-202.	4.4	47
68	High Order W02-Reactive Stable Oligomers of Amyloid-β are Produced in vivo and in vitro via Dialysis and Filtration of Synthetic Amyloid-β Monomer. Journal of Alzheimer's Disease, 2015, 44, 69-78.	2.6	2
69	Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of Î ² -Amyloid Precursor Protein. Journal of Neuroscience, 2015, 35, 3591-3597.	3.6	109
70	ls early-life iron exposure critical in neurodegeneration?. Nature Reviews Neurology, 2015, 11, 536-544.	10.1	86
71	Zinc affects the proteolytic stability of Apolipoprotein E in an isoform-dependent way. Neurobiology of Disease, 2015, 81, 38-48.	4.4	16
72	Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy. Analytical Chemistry, 2015, 87, 6639-6645.	6.5	39

#	Article	IF	CITATIONS
73	Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiology of Disease, 2015, 81, 168-175.	4.4	73
74	Enduring Elevations of Hippocampal Amyloid Precursor Protein and Iron Are Features of β-Amyloid Toxicity and Are Mediated by Tau. Neurotherapeutics, 2015, 12, 862-873.	4.4	50
75	GSK-3β dysregulation contributes to parkinson's-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death and Differentiation, 2015, 22, 838-851.	11.2	86
76	Isoflurane in the Aged Brain: A Link to Altered Amyloid Precursor Protein Processing. Journal of Parkinson's Disease and Alzheimer's Disease, 2015, 2, .	0.8	0
77	Increased Ndfip1 in the Substantia Nigra of Parkinsonian Brains Is Associated with Elevated Iron Levels. PLoS ONE, 2014, 9, e87119.	2.5	28
78	Rescue of the Friedreich Ataxia Knockout Mutation in Transgenic Mice Containing an FXN-EGFP Genomic Reporter. PLoS ONE, 2014, 9, e93307.	2.5	6
79	Interactions of metals and Apolipoprotein E in Alzheimerââ,¬â"¢s disease. Frontiers in Aging Neuroscience, 2014, 6, 121.	3.4	46
80	Role of metal ions in the cognitive decline of Down syndrome. Frontiers in Aging Neuroscience, 2014, 6, 136.	3.4	19
81	Clia and zinc in ageing and Alzheimerââ,¬â,,¢s disease: a mechanism for cognitive decline?. Frontiers in Aging Neuroscience, 2014, 6, 137.	3.4	35
82	P2-130: PROTEIN AND METAL ALTERATIONS IN PLATELETS OF ALZHEIMER'S DISEASE PATIENTS. , 2014, 10, P518-P518.		1
83	Effects of GDNF‣oaded Injectable Gelatinâ€Based Hydrogels on Endogenous Neural Progenitor Cell Migration. Advanced Healthcare Materials, 2014, 3, 761-774.	7.6	44
84	A novel approach to rapidly prevent ageâ€related cognitive decline. Aging Cell, 2014, 13, 351-359.	6.7	46
85	Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials, 2014, 35, 2692-2712.	11.4	59
86	P4-253: EVIDENCE FOR APOE PROTECTING AGAINST BRAIN IRON OVERLOAD. , 2014, 10, P878-P878.		1
87	The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. Journal of Analytical Atomic Spectrometry, 2014, 29, 565-570.	3.0	45
88	An iron–dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chemical Science, 2014, 5, 2160-2169.	7.4	98
89	Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Molecular Neurodegeneration, 2014, 9, 27.	10.8	60
90	Motor and cognitive deficits in aged tau knockout mice in two background strains. Molecular Neurodegeneration, 2014, 9, 29.	10.8	117

#	Article	IF	CITATIONS
91	A review of β-amyloid neuroimaging in Alzheimer's disease. Frontiers in Neuroscience, 2014, 8, 327.	2.8	76
92	P4-250: ZINC AFFECTS THE STABILITY OF APOLIPOPROTEIN E IN ALZHEIMER'S DISEASE. , 2014, 10, P877-P877.		0
93	P4-369: REVISITING THE ALZHEIMER'S AND PARKINSONISM PHENOTYPES OF TAU KO MICE: POTENTIAL GENETIC BACKGROUND EFFECT. , 2014, 10, P924-P924.		0
94	Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Annals of Neurology, 2013, 73, 554-559.	5.3	218
95	The effect of dopamine on MPTP-induced rotarod disability. Neuroscience Letters, 2013, 543, 105-109.	2.1	25
96	Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics, 2013, 5, 91.	2.4	64
97	Amine oxidase activity of β-amyloid precursor protein modulates systemic and local catecholamine levels. Molecular Psychiatry, 2013, 18, 245-254.	7.9	14
98	Intravenous Immunglobulin Binds Beta Amyloid and Modifies Its Aggregation, Neurotoxicity and Microglial Phagocytosis In Vitro. PLoS ONE, 2013, 8, e63162.	2.5	10
99	Age-Dependent Effects of A53T Alpha-Synuclein on Behavior and Dopaminergic Function. PLoS ONE, 2013, 8, e60378.	2.5	72
100	Clioquinol Synergistically Augments Rescue by Zinc Supplementation in a Mouse Model of Acrodermatitis Enteropathica. PLoS ONE, 2013, 8, e72543.	2.5	15
101	Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Human Molecular Genetics, 2012, 21, 3025-3041.	2.9	71
102	PBT2 Reduces Toxicity in a C. elegans Model of polyQ Aggregation and Extends Lifespan, Reduces Striatal Atrophy and Improves Motor Performance in the R6/2 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 211-219.	1.9	57
103	High-Resolution Elemental Bioimaging of Ca, Mn, Fe, Co, Cu, and Zn Employing LA-ICP-MS and Hydrogen Reaction Gas. Analytical Chemistry, 2012, 84, 6707-6714.	6.5	77
104	Improving acquisition times of elemental bio-imaging for quadrupole-based LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27, 159-164.	3.0	65
105	Three-Dimensional Atlas of Iron, Copper, and Zinc in the Mouse Cerebrum and Brainstem. Analytical Chemistry, 2012, 84, 3990-3997.	6.5	110
106	The hypoxia imaging agent Cull(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. Journal of Experimental Medicine, 2012, 209, 837-854.	8.5	151
107	Method to Impart Electro- and Biofunctionality to Neural Scaffolds Using Graphene–Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces, 2012, 4, 4524-4531.	8.0	80
108	Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nature Medicine, 2012, 18, 291-295.	30.7	491

#	Article	IF	CITATIONS
109	Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (Cull(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model. Journal of Biological Chemistry, 2011, 286, 44035-44044.	3.4	123
110	Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2011, 6, e17669.	2.5	115
111	α-Synuclein Transgenic Mice Reveal Compensatory Increases in Parkinson's Disease-Associated Proteins DJ-1 and Parkin and Have Enhanced α-Synuclein and PINK1 Levels After Rotenone Treatment. Journal of Molecular Neuroscience, 2010, 42, 243-254.	2.3	37
112	Implantation of Functionalized Thermally Gelling Xyloglucan Hydrogel Within the Brain: Associated Neurite Infiltration and Inflammatory Response. Tissue Engineering - Part A, 2010, 16, 2833-2842.	3.1	45
113	Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain. Metallomics, 2010, 2, 745.	2.4	72
114	Tau protein: Relevance to Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2010, 42, 1775-1778.	2.8	180
115	Cognitive Loss in Zinc Transporter-3 Knock-Out Mice: A Phenocopy for the Synaptic and Memory Deficits of Alzheimer's Disease?. Journal of Neuroscience, 2010, 30, 1631-1636.	3.6	327
116	Effect of unilateral lesion of the nigrostriatal dopamine pathway on survival and neurochemistry of parafascicular nucleus neurons in the rat — Evaluation of time-course and LGR8 expression. Brain Research, 2009, 1271, 83-94.	2.2	21
117	Dopamine D ² receptor knockout mice develop features of Parkinson disease. Annals of Neurology, 2009, 66, 472-484.	5.3	41
118	Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury. Journal of Biomedical Materials Research - Part A, 2009, 89A, 24-35.	4.0	49
119	Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor. Journal of Muscle Research and Cell Motility, 2009, 30, 73-83.	2.0	3
120	Relaxin Family Peptides and Receptors in Mammalian Brain. Annals of the New York Academy of Sciences, 2009, 1160, 226-235.	3.8	31
121	Surface and bulk characterisation of electrospun membranes: Problems and improvements. Colloids and Surfaces B: Biointerfaces, 2009, 71, 1-12.	5.0	39
122	Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials, 2009, 30, 4573-4580.	11.4	140
123	Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering. Journal of Biomaterials Applications, 2009, 24, 7-29.	2.4	264
124	Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics, 2009, 1, 53-58.	2.4	118
125	Molecular level and microstructural characterisation of thermally sensitive chitosan hydrogels. Soft Matter, 2009, 5, 4704.	2.7	25
126	Targeting the Progression of Parkinsons Disease. Current Neuropharmacology, 2009, 7, 9-36.	2.9	69

#	Article	IF	CITATIONS
127	Clioquinol Protects Against Cell Death in Parkinson's Disease Models In Vivo and In Vitro. Advances in Behavioral Biology, 2009, , 431-442.	0.2	7
128	Neural tissue engineering of the CNS using hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 251-263.	3.4	145
129	Estrogen enhances the number of nigral dopaminergic neurons of adult male mice without affecting nigral neuroglial number and morphology. Neuroscience Letters, 2008, 435, 210-214.	2.1	13
130	Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron, 2008, 59, 43-55.	8.1	629
131	Fetal striatum- and ventral mesencephalon–derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo. Neuroscience, 2008, 154, 606-620.	2.3	21
132	Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: Enrichment in thalamic neurons and their efferent projections. Neuroscience, 2008, 156, 319-333.	2.3	28
133	Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain, 2008, 131, 1574-1587.	7.6	82
134	Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Human Molecular Genetics, 2008, 17, 3281-3290.	2.9	89
135	Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering. Journal of Neural Engineering, 2007, 4, 35-41.	3.5	96
136	17β-Estradiol reduces nitrotyrosine immunoreactivity and increases SOD1 and SOD2 immunoreactivity in nigral neurons in male mice following MPTP insult. Brain Research, 2007, 1164, 24-31.	2.2	31
137	Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 2007, 28, 441-449.	11.4	298
138	Murine embryonic EGF-responsive ventral mesencephalic neurospheres display distinct regional specification and promote survival of dopaminergic neurons. Experimental Neurology, 2006, 199, 209-221.	4.1	21
139	Null mutation of the α4 nicotinic receptor subunit increases the propensity of muscarinic-mediated neuronal bursting in mouse hippocampal slices. Neuropharmacology, 2006, 51, 587-596.	4.1	6
140	Morphology and gelation of thermosensitive xyloglucan hydrogels. Biophysical Chemistry, 2006, 121, 14-20.	2.8	67
141	The effect of surface hydrophilicity on the behavior of embryonic cortical neurons. Journal of Colloid and Interface Science, 2006, 299, 647-655.	9.4	23
142	Inflammatory response on injection of chitosan/GP to the brain. Journal of Materials Science: Materials in Medicine, 2006, 17, 633-639.	3.6	44
143	Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Research, 2006, 1084, 28-37.	2.2	84
144	Morphology and gelation of thermosensitive chitosan hydrogels. Biophysical Chemistry, 2005, 117, 47-53.	2.8	87

#	Article	IF	CITATIONS
145	Chronic corticotropin-releasing factor type 1 receptor antagonism with antalarmin regulates the dopaminergic system of Fawn-Hooded rats. Journal of Neurochemistry, 2005, 94, 1523-1534.	3.9	11
146	Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia, 2005, 49, 520-541.	4.9	108
147	Dopaminergic innervation of the human striatum in Parkinson's disease. Movement Disorders, 2005, 20, 810-818.	3.9	29
148	Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell and Tissue Research, 2005, 320, 379-392.	2.9	35
149	Alterations in the Proportions of Skeletal Muscle Proteins following a Unilateral Lesion to the Substantia Nigra Pars Compacta of Rats. Journal of Muscle Research and Cell Motility, 2005, 26, 149-155.	2.0	2
150	Mice Lacking the α4 Nicotinic Receptor Subunit Fail to Modulate Dopaminergic Neuronal Arbors and Possess Impaired Dopamine Transporter Function. Molecular Pharmacology, 2005, 68, 1376-1386.	2.3	36
151	Haloperidol treatment reverses behavioural and anatomical changes in cocaine-dependent mice. Neurobiology of Disease, 2005, 19, 301-311.	4.4	16
152	Postural changes after lesions of the substantia nigra pars reticulata in hemiparkinsonian monkeys. Behavioural Brain Research, 2005, 160, 267-276.	2.2	28
153	Spontaneous Formation of Lewy Bodies in a Rodent. , 2005, , 321-329.		0
154	Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 2004, 87, 1056-1056.	3.9	0
155	Merozoite surface proteins 4 and 5 of Plasmodium knowlesi have differing cellular localisation and association with lipid rafts. Molecular and Biochemical Parasitology, 2004, 138, 153-158.	1.1	5
156	Glial responses associated with dopaminergic striatal reinnervation following lesions of the rat substantia nigra. Brain Research, 2004, 1023, 83-91.	2.2	17
157	Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 2004, 86, 329-343.	3.9	48
158	Quantified Assessment of Terminal Density and Innervation. Current Protocols in Neuroscience, 2004, 27, Unit 1.13.	2.6	8
159	Neuronal nicotinic receptors: insights gained from gene knockout an knocking mutant mice. Cellular and Molecular Life Sciences, 2003, 60, 1267-1280.	5.4	63
160	Neurochemical changes in dopamine D1, D3 and D1/D3 receptor knockout mice. European Journal of Pharmacology, 2003, 472, 39-47.	3.5	17
161	D2Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesions. European Journal of Neuroscience, 2003, 17, 1033-1045.	2.6	25
162	Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. European Journal of Neuroscience, 2003, 18, 1175-1188.	2.6	137

#	Article	IF	CITATIONS
163	Electroencephalographic characterisation of pentylenetetrazole-induced seizures in mice lacking the α4 subunit of the neuronal nicotinic receptor. Neuropharmacology, 2003, 44, 234-243.	4.1	37
164	A mouse model of spinal and bulbar muscular atrophy. Human Molecular Genetics, 2002, 11, 2103-2111.	2.9	72
165	Proconvulsant-induced seizures in α4 nicotinic acetylcholine receptor subunit knockout mice. Neuropharmacology, 2002, 43, 55-64.	4.1	20
166	The Role of Interleukin-1, Interleukin-6, and Glia in Inducing Growth of Neuronal Terminal Arbors in Mice. Journal of Neuroscience, 2002, 22, 8034-8041.	3.6	100
167	Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: Volume and neuronal number for the output, internal relay, and striatal modulating nuclei. Journal of Comparative Neurology, 2002, 445, 238-255.	1.6	223
168	Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size. European Journal of Neuroscience, 2002, 16, 787-794.	2.6	61
169	The Role of Dopamine Receptors in Regulating the Size of Axonal Arbours. Advances in Behavioral Biology, 2002, , 313-321.	0.2	1
170	The Role of Dopamine Receptors in Regulating the Size of Axonal Arbors. Journal of Neuroscience, 2001, 21, 5147-5157.	3.6	114
171	Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: Single axon reconstructions and immunohistochemical study. Journal of Comparative Neurology, 2001, 440, 20-30.	1.6	61
172	Study of projections from the entopeduncular nucleus to the thalamus of the rat. Journal of Comparative Neurology, 2000, 426, 366-377.	1.6	68
173	Comparative study on the distribution patterns of P2X1-P2X6 receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): Association with catecholamine cell groups. Journal of Comparative Neurology, 2000, 427, 485-507.	1.6	105
174	Axonal sprouting following lesions of the rat substantia nigra. Neuroscience, 2000, 97, 99-112.	2.3	180
175	Study of projections from the entopeduncular nucleus to the thalamus of the rat. Journal of Comparative Neurology, 2000, 426, 366-77.	1.6	30
176	Comparative study on the distribution patterns of P2X(1)-P2X(6) receptor immunoreactivity in the brainstem of the rat and the common marmoset (Callithrix jacchus): association with catecholamine cell groups. Journal of Comparative Neurology, 2000, 427, 485-507.	1.6	36
177	Nitrergic stimulation of the locus coeruleus modulates blood pressure and heart rate in the anaesthetized rat. Neuroscience, 1999, 91, 621-629.	2.3	18
178	Early direct and transneuronal effects in mice with targeted expression of a toxin gene to D1 dopamine receptor neurons. Neuroscience, 1999, 95, 1025-1033.	2.3	16
179	Sprouting of Dopaminergic Axons after Striatal Injury: Confirmation by Markers Not Dependent on Dopamine Metabolism. Experimental Neurology, 1999, 159, 565-573.	4.1	38
180	Neuronal activity in the monkey ventrolateral thalamus following perturbations of voluntary wrist movements. Experimental Brain Research, 1998, 118, 393-407.	1.5	6

#	Article	IF	CITATIONS
181	Regional distribution of low affinity kainate receptors in brain of Macaca fascicularis determined by autoradiography using [3H](2S,4R)-4-methylglutamate. Neuroscience Letters, 1998, 255, 71-74.	2.1	27
182	Targeted Expression of a Toxin Gene to D1 Dopamine Receptor Neurons byCre-Mediated Site-Specific Recombination. Journal of Neuroscience, 1998, 18, 9845-9857.	3.6	63
183	The effects of reversible inactivation of the subthalamo-pallidal pathway on the behaviour of naive and hemiparkinsonian monkeys. Journal of Clinical Neuroscience, 1997, 4, 218-227.	1.5	17
184	A comparison of methods used to detect changes in neuronal discharge patterns. Journal of Neuroscience Methods, 1997, 76, 203-210.	2.5	18
185	Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. , 1997, 47, 208-215.		71
186	FGF plays a subtle role in oligodendrocyte maintenance in vivo. Journal of Neuroscience Research, 1997, 49, 404-415.	2.9	20
187	Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. Journal of Neuroscience Research, 1997, 47, 208-215.	2.9	2
188	An electron microscopic tracer study of the projections from entopeduncular nucleus to the ventrolateral nucleus of the rat. Neuroscience Letters, 1996, 211, 33-36.	2.1	18
189	The relationship between monkey ventrolateral thalamic nucleus activity and kinematic parameters of wrist movement. Brain Research, 1996, 736, 146-159.	2.2	13
190	On the distribution of cholecystokinin B receptors in monkey brain. Brain Research, 1996, 738, 313-318.	2.2	19
191	Leukemia inhibitory factor is a myotrophic and neurotrophic agent that enhances the reinnervation of muscle in the rat. , 1996, 46, 122-128.		33
192	Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: A light and electron microscopic study using single and double anterograde labelling. Journal of Comparative Neurology, 1994, 349, 165-181.	1.6	99
193	Recovery of muscle after different periods of denervation and treatments. Muscle and Nerve, 1993, 16, 769-777.	2.2	51
194	Neural activity in the monkey anterior ventrolateral thalamus during trained, ballistic movements. Journal of Neurophysiology, 1993, 70, 2276-2288.	1.8	18
195	Developmental changes in hindlimb muscles and diaphragm of sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 263, R900-R908.	1.8	15
196	Immunity to nerve growth factor and the effect on motor unit reinnervation in the rabbit. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 262, R813-R818.	1.8	2
197	The effect of a six day sucrose diet on isometric contractile characteristics and histochemistry of rat muscles. Journal of Animal Physiology and Animal Nutrition, 1992, 68, 10-19.	2.2	1
198	Effects of thyroidectomy on development of skeletal muscle in fetal sheep. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 261, R1300-R1306.	1.8	21

#	Article	IF	CITATIONS
199	Functional and structural changes of rat plantaris motoneurons following compensatory hypertrophy of the muscle. The Anatomical Record, 1991, 229, 129-137.	1.8	15
200	Australian Stringhalt ―epidemiological, clinical and neurological investigations. Equine Veterinary Journal, 1989, 21, 266-273.	1.7	64
201	Contractile properties of cat motor units enlarged by motoneurone sprouting. Experimental Brain Research, 1985, 60, 590-3.	1.5	17