Harald Sodemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6303742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Disintegration of Maya Political Systems in Response to Climate Change. Science, 2012, 338, 788-791.	12.6	421
2	Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research, 2008, 113, .	3.3	289
3	What controls deuterium excess in global precipitation?. Climate of the Past, 2014, 10, 771-781.	3.4	260
4	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	4.9	259
5	The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 2019, 12, 4955-4997.	3.6	238
6	Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics, 2010, 10, 669-693.	4.9	218
7	Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N–a tale of hurricanes and an atmospheric river. Journal of Geophysical Research, 2008, 113, .	3.3	201
8	North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications, 2015, 6, 6344.	12.8	183
9	An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophysical Research Letters, 2010, 37, .	4.0	172
10	Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmospheric Chemistry and Physics, 2013, 13, 303-325.	4.9	172
11	Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics, 2010, 10, 9351-9368.	4.9	169
12	Moisture Origin and Meridional Transport in Atmospheric Rivers and Their Association with Multiple Cyclones*. Monthly Weather Review, 2013, 141, 2850-2868.	1.4	164
13	Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmospheric Chemistry and Physics, 2013, 13, 4815-4828.	4.9	155
14	Asymmetries in the moisture origin of Antarctic precipitation. Geophysical Research Letters, 2009, 36, .	4.0	139
15	Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics, 2014, 14, 4029-4054.	4.9	138
16	Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth and Planetary Science Letters, 2013, 369-370, 108-119.	4.4	134
17	A comparison of the present and last interglacial periods in six Antarctic ice cores. Climate of the Past, 2011, 7, 397-423.	3.4	131
18	The role of upperâ€level dynamics and surface processes for the Pakistan flood of July 2010. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1780-1797.	2.7	118

#	Article	IF	CITATIONS
19	Measuring variations of Î ¹⁸ O and Î ² H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study. Atmospheric Measurement Techniques, 2012, 5, 1491-1511.	3.1	116
20	Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. Journal of Geophysical Research, 2008, 113, .	3.3	113
21	Seasonal and interâ€annual variability of the moisture sources for Alpine precipitation during 1995–2002. International Journal of Climatology, 2010, 30, 947-961.	3.5	111
22	Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 2018, 563, 681-685.	27.8	108
23	The North Atlantic Waveguide and Downstream Impact Experiment. Bulletin of the American Meteorological Society, 2018, 99, 1607-1637.	3.3	105
24	Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophysical Research Letters, 2013, 40, 2433-2438.	4.0	101
25	Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation l´ ¹⁸ O. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5850-5862.	3.3	95
26	A revised picture of the atmospheric moisture residence time. Geophysical Research Letters, 2016, 43, 924-933.	4.0	95
27	The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland. Atmospheric Chemistry and Physics, 2014, 14, 4419-4439.	4.9	86
28	A Climatology of Cold Air Outbreaks and Their Impact on Air–Sea Heat Fluxes in the High-Latitude South Pacific. Journal of Climate, 2015, 28, 342-364.	3.2	81
29	Deglaciation records of ¹⁷ O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites. Climate of the Past, 2012, 8, 1-16.	3.4	80
30	Interglacial Hydroclimate in the Tropical West Pacific Through the Late Pleistocene. Science, 2012, 336, 1301-1304.	12.6	79
31	The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2970-2989.	3.3	78
32	Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 205-223.	2.7	76
33	The transport history of two Saharan dust events archived in an Alpine ice core. Atmospheric Chemistry and Physics, 2006, 6, 667-688.	4.9	72
34	Isotope meteorology of cold front passages: A case study combining observations and modeling. Geophysical Research Letters, 2015, 42, 5652-5660.	4.0	70
35	The Role of Extratropical Cyclones and Fronts for Southern Ocean Freshwater Fluxes. Journal of Climate, 2014, 27, 6205-6224.	3.2	69
36	Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5757-5774.	3.3	67

HARALD SODEMANN

#	Article	IF	CITATIONS
37	A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. Atmospheric Chemistry and Physics, 2019, 19, 747-765.	4.9	66
38	Transport of mercury in the Arctic atmosphere: Evidence for a springâ€ŧime net sink and summerâ€ŧime source. Geophysical Research Letters, 2009, 36, .	4.0	62
39	Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1245-1258.	2.7	59
40	Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 8479-8520.	4.9	57
41	How important is intensified evaporation for Mediterranean precipitation extremes?. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5240-5256.	3.3	55
42	Comparison of Eulerian and Lagrangian moisture source diagnostics – the flood event in eastern Europe in May 2010. Atmospheric Chemistry and Physics, 2014, 14, 6605-6619.	4.9	55
43	Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008. Atmospheric Chemistry and Physics, 2011, 11, 10097-10123.	4.9	52
44	The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixingÂprocesses from lower-tropospheric survey flights. Atmospheric Chemistry and Physics, 2017, 17, 6125-6151.	4.9	52
45	In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 10975-10994.	4.9	49
46	Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations. Atmospheric Chemistry and Physics, 2011, 11, 3631-3651.	4.9	47
47	Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmospheric Chemistry and Physics, 2011, 11, 741-752.	4.9	45
48	The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley. Hydrology and Earth System Sciences, 2019, 23, 2525-2540.	4.9	45
49	The residence time of water vapour in the atmosphere. Nature Reviews Earth & Environment, 2021, 2, 558-569.	29.7	41
50	Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,653.	3.3	35
51	Marine Primary Productivity as a Potential Indirect Source of Selenium and Other Trace Elements in Atmospheric Deposition. Environmental Science & Technology, 2017, 51, 108-118.	10.0	31
52	Physical and chemical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign. Atmospheric Chemistry and Physics, 2011, 11, 10947-10963.	4.9	30
53	Snow accumulation and its moisture origin over Dome Argus, Antarctica. Climate Dynamics, 2013, 40, 731-742.	3.8	30
54	Temperature signals in tree-ring oxygen isotope series from the northern slope of the Himalaya. Earth and Planetary Science Letters, 2019, 506, 455-465.	4.4	30

HARALD SODEMANN

#	Article	IF	CITATIONS
55	Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean. Atmospheric Chemistry and Physics, 2020, 20, 5811-5835.	4.9	28
56	The Impact of Nonequilibrium and Equilibrium Fractionation on Two Different Deuterium Excess Definitions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,732.	3.3	27
57	Beyond Turnover Time: Constraining the Lifetime Distribution of Water Vapor from Simple and Complex Approaches. Journals of the Atmospheric Sciences, 2020, 77, 413-433.	1.7	25
58	Planning aircraft measurements within a warm conveyor belt. Weather, 2014, 69, 161-166.	0.7	22
59	The Iceland Greenland Seas Project. Bulletin of the American Meteorological Society, 2019, 100, 1795-1817.	3.3	21
60	Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers. Atmospheric Measurement Techniques, 2020, 13, 3167-3190.	3.1	21
61	Special characteristics of the temperature structure near the surface. Theoretical and Applied Climatology, 2005, 80, 81-89.	2.8	20
62	Lagrangian dust model simulations for a case of moist convective dust emission and transport in the western Sahara region during Fennec/LADUNEX. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6117-6144.	3.3	20
63	Characterizing the Local and Intense Water Cycle during a Cold Air Outbreak in the Nordic Seas. Monthly Weather Review, 2018, 146, 3567-3588.	1.4	19
64	Linking Subâ€Tropical Evaporation and Extreme Precipitation Over East Antarctica: An Atmospheric River Case Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033617.	3.3	17
65	Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 2665-2671.	2.7	12
66	Multiscale characteristics of an extreme precipitation event over Nepal. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 179-196.	2.7	9
67	Abrupt Common Era hydroclimate shifts drive west Greenland ice cap change. Nature Geoscience, 2021, 14, 756-761.	12.9	9
68	High-resolution stable isotope signature of a land-falling atmospheric river in southern Norway. Weather and Climate Dynamics, 2021, 2, 713-737.	3.5	8
69	Structure, Process, and Mechanism. , 2020, , 15-43.		8
70	High-Latitude Dynamics of Atmosphere–Ice–Ocean Interactions. Bulletin of the American Meteorological Society, 2016, 97, ES179-ES182.	3.3	7
71	Assessing the Sampling Quality of a Low-Tech Low-Budget Volume-Based Rainfall Sampler for Stable Isotope Analysis. Frontiers in Earth Science, 2019, 7, .	1.8	7
72	Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE). Atmospheric Chemistry and Physics, 2021, 21, 10911-10937.	4.9	7

#	Article	IF	CITATIONS
73	2018 International Atmospheric Rivers Conference: Multiâ€disciplinary studies and highâ€impact applications of atmospheric rivers. Atmospheric Science Letters, 2019, 20, e935.	1.9	5
74	Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability. Atmospheric Measurement Techniques, 2021, 14, 6675-6693.	3.1	5
75	Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography. Atmospheric Chemistry and Physics, 2021, 21, 5477-5498.	4.9	3
76	On the utility of individual tendency output: Revealing interactions between parameterised processes during a marine cold air outbreak. Weather and Forecasting, 2021, , .	1.4	1
77	A Ship-Based Characterization of Coherent Boundary-Layer Structures Over the Lifecycle of a Marine Cold-Air Outbreak. Boundary-Layer Meteorology, 0, , 1.	2.3	1
78	Numerical methods to identify model uncertainty. , 2021, , 309-329.		0