
Stuart Kellie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6301819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leucocyte integrins, but neither caspases nor NLR inflammasome are associated with lipopolysaccharide recognition and response in barramundi (Lates calcarifer). Fish and Shellfish Immunology, 2019, 91, 172-179.	3.6	4
2	Immune transcriptome reveals the mincle C-type lectin receptor acts as a partial replacement for TLR4 in lipopolysaccharide-mediated inflammatory response in barramundi (Lates calcarifer). Molecular Immunology, 2017, 83, 33-45.	2.2	22
3	TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. Journal of Leukocyte Biology, 2016, 100, 27-45.	3.3	138
4	Differential expression of CD148 on leukocyte subsets in inflammatory arthritis. Arthritis Research and Therapy, 2013, 15, R108.	3.5	8
5	The structure of the caspase recruitment domain of BinCARD reveals that all three cysteines can be oxidized. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 774-784.	2.5	13
6	Regulated Expression of PTPRJ/CD148 and an Antisense Long Noncoding RNA in Macrophages by Proinflammatory Stimuli. PLoS ONE, 2013, 8, e68306.	2.5	48
7	Adaptors in Toll-Like Receptor Signaling and their Potential as Therapeutic Targets. Current Drug Targets, 2012, 13, 1360-1374.	2.1	68
8	Oligomeric amyloid-β peptide affects the expression of genes involved in steroid and lipid metabolism in primary neurons. Neurochemistry International, 2012, 61, 321-333.	3.8	21
9	The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 637-648.	2.5	22
10	Expression and Function of the Protein Tyrosine Phosphatase Receptor J (PTPRJ) in Normal Mammary Epithelial Cells and Breast Tumors. PLoS ONE, 2012, 7, e40742.	2.5	22
11	Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis. PLoS ONE, 2011, 6, e15723.	2.5	67
12	Tyrosine Phosphorylation of Tau by the Src Family Kinases Lck and Fyn. Molecular Neurodegeneration, 2011, 6, 12.	10.8	42
13	Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14879-14884.	7.1	123
14	Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Progress in Lipid Research, 2010, 49, 366-377.	11.6	128
15	CD148/DEP-1 association with areas of cytoskeletal organisation in macrophages. Experimental Cell Research, 2009, 315, 1734-1744.	2.6	11
16	Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Molecular Immunology, 2009, 47, 340-347.	2.2	19
17	Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Research, 2008, 4, 5.	0.1	400
18	Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using <i>Csf1r</i> -Gal4VP16/UAS-ECFP double-transgenic mice. Journal of Leukocyte Biology, 2008, 83, 430-433.	3.3	77

STUART KELLIE

#	Article	IF	CITATIONS
19	Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase Cl ³ 1, Grb2, and Src Family Kinases. Journal of Biological Chemistry, 2008, 283, 18177-18186.	3.4	198
20	Overview of the Pipeline for Structural and Functional Characterization of Macrophage Proteins at the University of Queensland. Methods in Molecular Biology, 2008, 426, 577-587.	0.9	1
21	Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10382-10387.	7.1	71
22	G-protein-coupled receptor expression, function, and signaling in macrophages. Journal of Leukocyte Biology, 2007, 82, 16-32.	3.3	103
23	Focusing in on structural genomics: The University of Queensland structural biology pipeline. New Biotechnology, 2006, 23, 281-289.	2.7	14
24	An Inflammatory Role for the Mammalian Carboxypeptidase Inhibitor Latexin: Relationship to Cystatins and the Tumor Suppressor TIG1. Structure, 2005, 13, 309-317.	3.3	71
25	Tyrosine 394 Is Phosphorylated in Alzheimer's Paired Helical Filament Tau and in Fetal Tau with c-Abl as the Candidate Tyrosine Kinase. Journal of Neuroscience, 2005, 25, 6584-6593.	3.6	168
26	The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation. Journal of Cell Science, 2004, 117, 609-618.	2.0	35
27	Identification of residues which regulate activity of the STE20-related kinase hMINK. Biochemical and Biophysical Research Communications, 2003, 300, 694-698.	2.1	8
28	Rapid Tyrosine Phosphorylation of Neuronal Proteins Including Tau and Focal Adhesion Kinase in Response to Amyloid-β Peptide Exposure: Involvement of Src Family Protein Kinases. Journal of Neuroscience, 2002, 22, 10-20.	3.6	233
29	A Nuclear SH3 Domain-binding Protein That Colocalizes with mRNA Splicing Factors and Intermediate Filament-containing Perinuclear Networks. Journal of Biological Chemistry, 2001, 276, 30552-30560.	3.4	20
30	A Functional Nuclear Localization Sequence in the C-terminal Domain of SHP-1. Journal of Biological Chemistry, 2001, 276, 23719-23725.	3.4	59
31	Sam68 from an immortalised B-cell line associates with a subset of SH3 domains. FEBS Letters, 1996, 389, 141-144.	2.8	15
32	The C-terminal SH3 Domain of p67phoxBinds its Natural Ligand in a Reverse Orientation. Journal of Molecular Biology, 1996, 261, 173-180.	4.2	10
33	The cytoskeleton and neoplastic transformation. Cytoskeleton: A Multi-Volume Treatise, 1996, 3, 133-158.	0.1	1
34	Identification of Regions of the Wiskott-Aldrich Syndrome Protein Responsible for Association with Selected Src Homology 3 Domains. Journal of Biological Chemistry, 1996, 271, 26291-26295.	3.4	63
35	Tyrosine-kinase activity in rabbit platelets stimulated with platelet-activating factor. The effect of inhibiting tyrosine kinase with genistein on platelet-signal-molecule elevation and functional responses. FEBS Journal, 1993, 216, 639-651.	0.2	31
36	Calcium ionophore A23187 induces interleukin-8 gene expression and protein secretion in human monocytic cells. FEBS Letters, 1993, 325, 295-298.	2.8	31

STUART KELLIE

#	Article	IF	CITATIONS
37	Comparison of the role of protein kinase C in platelet functional responses induced by three different mechanisms, PAF, ionomycin and arachidonic acid. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1133, 46-54.	4.1	9
38	Tyrosine kinase activities and neoplastic transformation. Biochemical Society Transactions, 1990, 18, 69-72.	3.4	6
39	Tyrosine-specific phosphorylation of gpIIIa in platelet membranes. FEBS Letters, 1990, 269, 283-287.	2.8	15
40	Cellular transformation, tyrosine kinase oncogenes, and the cellular adhesion plaque. BioEssays, 1988, 8, 25-30.	2.5	56
41	Membrane and cytoskeletal changes in cells after transformation by Rous Sarcoma virus. Biochemical Society Transactions, 1987, 15, 791-794.	3.4	2
42	Elevated phosphatidylinositol kinase activity in Rous sarcoma virus-transformed cells. Lack of evidence for enzyme translocation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 931, 165-169.	4.1	2
43	The use of Rous sarcoma virus transformation mutants with differing tyrosine kinase activities to study the relationships between vinculin phosphorylation, pp60v-src location and adhesion plaque integrity. Experimental Cell Research, 1986, 165, 216-228,	2.6	48