
Vivianne G A A Vleeshouwers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6300474/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Planta Expression Screens of <i>Phytophthora infestans</i> RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the <i>Solanum bulbocastanum</i> Disease Resistance Protein Rpi-blb2. Plant Cell, 2009, 21, 2928-2947.	6.6	376
2	Resistance of Nicotiana benthamiana to Phytophthora infestans Is Mediated by the Recognition of the Elicitor Protein INF1. Plant Cell, 1998, 10, 1413-1425.	6.6	371
3	Understanding and Exploiting Late Blight Resistance in the Age of Effectors. Annual Review of Phytopathology, 2011, 49, 507-531.	7.8	369
4	Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interactions, 2014, 27, 196-206.	2.6	363
5	Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS ONE, 2008, 3, e2875.	2.5	361
6	Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant Journal, 2005, 42, 251-261.	5.7	355
7	Genome Analyses of an Aggressive and Invasive Lineage of the Irish Potato Famine Pathogen. PLoS Pathogens, 2012, 8, e1002940.	4.7	321
8	A Gene Encoding a Protein Elicitor of Phytophthora infestans Is Down-Regulated During Infection of Potato. Molecular Plant-Microbe Interactions, 1997, 10, 13-20.	2.6	233
9	Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants, 2015, 1, 15034.	9.3	229
10	The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 2000, 210, 853-864.	3.2	217
11	Resistance to oomycetes: a general role for the hypersensitive response?. Trends in Plant Science, 1999, 4, 196-200.	8.8	183
12	Qualitative and Quantitative Late Blight Resistance in the Potato Cultivar Sarpo Mira Is Determined by the Perception of Five Distinct RXLR Effectors. Molecular Plant-Microbe Interactions, 2012, 25, 910-919.	2.6	162
13	Title is missing!. European Journal of Plant Pathology, 1999, 105, 241-250.	1.7	146
14	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€ike</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	7.3	142
15	The Late Blight Resistance Locus Rpi-blb3 from Solanum bulbocastanum Belongs to a Major Late Blight R Gene Cluster on Chromosome 4 of Potato. Molecular Plant-Microbe Interactions, 2005, 18, 722-729.	2.6	133
16	A Cα subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Molecular Microbiology, 2004, 51, 925-936.	2.5	130
17	Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the <i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24, 3420-3434.	6.6	130
18	The R3 Resistance to Phytophthora infestans in Potato is Conferred by Two Closely Linked R Genes with Distinct Specificities. Molecular Plant-Microbe Interactions, 2004, 17, 428-435.	2.6	121

#	Article	IF	CITATIONS
19	<i>Phytophthora infestans</i> Isolates Lacking Class I <i>ipiO</i> Variants Are Virulent on <i>Rpi-blb1</i> Potato. Molecular Plant-Microbe Interactions, 2009, 22, 1535-1545.	2.6	118
20	Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116, 933-943.	3.6	117
21	Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology, 2003, 4, 487-500.	4.2	90
22	Nine things to know about elicitins. New Phytologist, 2016, 212, 888-895.	7.3	84
23	Does basal PR gene expression in Solanum species contribute to non-specific resistance toPhytophthora infestans ?. Physiological and Molecular Plant Pathology, 2000, 57, 35-42.	2.5	73
24	Diversity, Distribution, and Evolution of <i>Solanum bulbocastanum</i> Late Blight Resistance Genes. Molecular Plant-Microbe Interactions, 2010, 23, 1206-1216.	2.6	69
25	High-resolution Mapping and Analysis of the Resistance Locus Rpi-abpt Against Phytophthora infestans in Potato. Molecular Breeding, 2005, 16, 33-43.	2.1	66
26	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	4.8	66
27	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	9.3	62
28	Differences in Intensity and Specificity of Hypersensitive Response Induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Molecular Plant-Microbe Interactions, 2005, 18, 183-193.	2.6	56
29	AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evolutionary Biology, 2008, 8, 145.	3.2	52
30	Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 2006, 7, 499-510.	4.2	50
31	A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theoretical and Applied Genetics, 2010, 120, 785-796.	3.6	49
32	Gapless Genome Assembly of the Potato and Tomato Early Blight Pathogen <i>Alternaria solani</i> . Molecular Plant-Microbe Interactions, 2018, 31, 692-694.	2.6	48
33	Agroinfiltration and PVX Agroinfection in Potato and Nicotiana benthamiana . Journal of Visualized Experiments, 2014, , e50971.	0.3	46
34	The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2018, 31, 795-802.	2.6	46
35	Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theoretical and Applied Genetics, 2016, 129, 105-115.	3.6	43
36	Dissection of foliage and tuber late blight resistance in mapping populations of potato. Euphytica, 2005, 143, 75-83.	1.2	41

#	Article	IF	CITATIONS
37	An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica, 2015, 202, 219-234.	1.2	41
38	Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen. BMC Evolutionary Biology, 2018, 18, 93.	3.2	41
39	Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants. Plant Molecular Biology, 1995, 29, 909-920.	3.9	39
40	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	7.1	39
41	SolRgene: an online database to explore disease resistance genes in tuber-bearing Solanum species. BMC Plant Biology, 2011, 11, 116.	3.6	38
42	RLP/K enrichment sequencing; a novel method to identify receptorâ€like protein (<i>RLP</i>) and receptorâ€like kinase (<i>RLK</i>) genes. New Phytologist, 2020, 227, 1264-1276.	7.3	32
43	An Accurate In Vitro Assay for High-Throughput Disease Testing of Phytophthora infestans in Potato. Plant Disease, 2005, 89, 1263-1267.	1.4	30
44	Effectoromics-Based Identification of Cell Surface Receptors in Potato. Methods in Molecular Biology, 2017, 1578, 337-353.	0.9	26
45	Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Molecular Biology Reports, 2013, 40, 957-967.	2.3	25
46	Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. New Phytologist, 2021, 229, 3424-3439.	7.3	24
47	Ancient Diversification of the Pto Kinase Family Preceded Speciation in Solanum. Molecular Plant-Microbe Interactions, 2001, 14, 996-1005.	2.6	23
48	ldentification of <i>Avramr1</i> from <i>Phytophthora infestans</i> using long read and cDNA pathogenâ€enrichment sequencing (PenSeq). Molecular Plant Pathology, 2020, 21, 1502-1512.	4.2	22
49	The Do's and Don'ts of Effectoromics. Methods in Molecular Biology, 2014, 1127, 257-268.	0.9	17
50	Increased Difficulties to Control Late Blight in Tunisia Are Caused by a Genetically Diverse <i>Phytophthora infestans</i> Population Next to the Clonal Lineage NA-01. Plant Disease, 2014, 98, 898-908.	1.4	17
51	Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by in Silico Modeling and Virtual Screening Strategies to Combat Early Blight. Frontiers in Chemistry, 2017, 5, 100.	3.6	16
52	High Resolution Mapping of a Novel Late Blight Resistance Gene Rpi-avl1, from the Wild Bolivian Species Solanum avilesii. American Journal of Potato Research, 2011, 88, 511-519.	0.9	13
53	Characterisation of Phytophthora infestans Isolates Collected from Potato and Tomato Crops in Tunisia During 2006â ϵ "2008. Potato Research, 2013, 56, 11-29.	2.7	13
54	Qualitative and Quantitative Resistance against Early Blight Introgressed in Potato. Biology, 2021, 10, 892.	2.8	13

#	Article	IF	CITATIONS
55	A rapid method to screen wild Solanum for resistance to early blight. European Journal of Plant Pathology, 2019, 154, 109-114.	1.7	12
56	Divergent Evolution of PcF/SCR74 Effectors in Oomycetes Is Associated with Distinct Recognition Patterns in Solanaceous Plants. MBio, 2020, 11, .	4.1	11
57	High-Resolution Mapping of Two Broad-Spectrum Late Blight Resistance Genes from Two Wild Species of the Solanum circaeifolium Group. Potato Research, 2012, 55, 109-123.	2.7	10
58	Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods, 2016, 12, 29.	4.3	10
59	Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted. Current Biology, 2012, 22, R997-R999.	3.9	8
60	Plant immunity switched from bacteria to virus. Nature Biotechnology, 2016, 34, 391-392.	17.5	7
61	New Strategies Towards Durable Late Blight Resistance in Potato. Compendium of Plant Genomes, 2017, , 161-169.	0.5	6
62	Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytologist, 2021, 232, 1368-1381.	7.3	6
63	Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interactions, 2015, 2015, 17-27.	2.6	4
64	Identification of Solanum Immune Receptors by Bulked Segregant RNA-Seq and High-Throughput Recombinant Screening. Methods in Molecular Biology, 2021, 2354, 315-330.	0.9	3
65	Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interactions, 2015, 2015, 40-50.	2.6	3
66	Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interactions, 0, , MPMI-10-13-0313.	2.6	1
67	Quantifying the Contribution to Virulence of Phytophthora infestans Effectors in Potato. Methods in Molecular Biology, 2021, 2354, 303-313.	0.9	0
68	Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interactions, 0, , MPMI-10-13-0313.	2.6	0