Santiago V Luis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chemical Reviews, 2015, 115, 8736-8834.	47.7	346
2	Synthetic Macrocyclic Peptidomimetics as Tunable pH Probes for the Fluorescence Imaging of Acidic Organelles in Live Cells. Angewandte Chemie - International Edition, 2005, 44, 6504-6508.	13.8	151
3	Bis(oxazoline)copper Complexes Covalently Bonded to Insoluble Support as Catalysts in Cyclopropanation Reactions. Journal of Organic Chemistry, 2001, 66, 8893-8901.	3.2	123
4	Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chemical Society Reviews, 2018, 47, 2722-2771.	38.1	120
5	Polymer-Supported Bis(oxazoline)â^Copper Complexes as Catalysts in Cyclopropanation Reactions. Organic Letters, 2000, 2, 3905-3908.	4.6	109
6	Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the support. Journal of Catalysis, 2010, 269, 150-160.	6.2	107
7	Efficient Macrocyclization of U-Turn Preorganized Peptidomimetics:  The Role of Intramolecular H-Bond and Solvophobic Effects. Journal of the American Chemical Society, 2003, 125, 6677-6686.	13.7	104
8	New advances in dual stereocontrol for asymmetric reactions. Chemical Society Reviews, 2013, 42, 5595.	38.1	104
9	How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie - International Edition, 2000, 39, 1503-1506.	13.8	98
10	Thermodynamics and fluorescence emission studies on potential molecular chemosensors for ATP recognition in aqueous solution â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 2545-2549.	0.9	93
11	Supramolecular Control for the Modular Synthesis of Pseudopeptidic Macrocycles through an Anion-Templated Reaction. Journal of the American Chemical Society, 2008, 130, 6137-6144.	13.7	93
12	Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, 2006, , 3095.	4.1	88
13	Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 2008, 10, 401.	9.0	83
14	Polymerâ€&upported Ionic‣iquidâ€Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices. Chemistry - A European Journal, 2011, 17, 1894-1906.	3.3	83
15	Polymer-Grafted Tiâ^'TADDOL Complexes. Preparation and Use as Catalysts in Dielsâ^'Alder Reactions. Journal of Organic Chemistry, 1997, 62, 3126-3134.	3.2	76
16	A Hydrogen-Bonding-Modulated Molecular Rotor:Â Environmental Effect in the Conformational Stability of Peptidomimetic Macrocyclic Cyclophanes. Journal of Organic Chemistry, 2006, 71, 2242-2250.	3.2	75
17	Polymer supported ionic liquid phases (SILPs) versus ionic liquids (ILs): How much do they look alike. Chemical Communications, 2007, , 3086-3088.	4.1	74
18	Minimalist peptidomimetic cyclophanes as strong organogelators. Chemical Communications, 2002, , 738-739.	4.1	73

#	Article	IF	CITATIONS
19	Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 2014, 50, 3579.	4.1	73
20	An efficient synthesis of polyaza[n]paracyclophanes. Journal of Organic Chemistry, 1993, 58, 4749-4753.	3.2	72
21	Self-Assembly of Small Peptidomimetic Cyclophanes. Chemistry - A European Journal, 2004, 10, 3879-3890.	3.3	71
22	The First Immobilization of Pyridine-bis(oxazoline) Chiral Ligands. Organic Letters, 2002, 4, 3927-3930.	4.6	67
23	Sponge-like ionic liquids: a new platform for green biocatalytic chemical processes. Green Chemistry, 2015, 17, 3706-3717.	9.0	67
24	Photoluminescence Enhancement of CdSe Quantum Dots: A Case of Organogel–Nanoparticle Symbiosis. Journal of the American Chemical Society, 2012, 134, 20554-20563.	13.7	65
25	New Supported β-Amino Alcohols as Efficient Catalysts for the Enantioselective Addition of Diethylzinc to Benzaldehyde under Flow Conditions. Organic Letters, 2002, 4, 3947-3950.	4.6	64
26	Immobilised Lipase on Structured Supports Containing Covalently Attached Ionic Liquids for the Continuous Synthesis of Biodiesel in scCO ₂ . ChemSusChem, 2012, 5, 790-798.	6.8	64
27	Supercritical Synthesis of Biodiesel. Molecules, 2012, 17, 8696-8719.	3.8	63
28	Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chemistry, 2017, 19, 5345-5349.	9.0	63
29	Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 2010, 12, 1803.	9.0	60
30	Fluorescent Acridine-Based Receptors for H ₂ PO ₄ [–] . Journal of Organic Chemistry, 2012, 77, 490-500.	3.2	58
31	Bioinspired Chemistry Based on Minimalistic Pseudopeptides. Accounts of Chemical Research, 2014, 47, 112-124.	15.6	58
32	Synthesis and study of a cyclophane displaying dual fluorescence emission: a novel ratiometric sensor for carboxylic acids in organic medium. Tetrahedron Letters, 2004, 45, 1659-1662.	1.4	56
33	Molecular Rotors as Simple Models to Study Amide NHâ^'Aromatic Interactions and Their Role in the Folding of Peptide-like Structures. Journal of Organic Chemistry, 2007, 72, 7947-7956.	3.2	56
34	A remarkable shape selectivity in the molecular recognition of carboxylate anions in aqueous solution. Journal of the American Chemical Society, 1992, 114, 1919-1920.	13.7	55
35	Supported chiral amino alcohols and diols functionalized with aluminium and titanium as catalysts of Diels-Alder reaction. Tetrahedron, 1996, 52, 9853-9862.	1.9	55
36	Bisoxazoline-functionalised enantioselective monolithic mini-flow-reactors: development of efficient processes from batch to flow conditions. Green Chemistry, 2007, 9, 1091.	9.0	55

#	Article	IF	CITATIONS
37	Synthesis of Chiral Room Temperature Ionic Liquids from Amino Acids – Application in Chiral Molecular Recognition. European Journal of Organic Chemistry, 2012, 2012, 4996-5009.	2.4	55
38	lonic liquids as an enabling tool to integrate reaction and separation processes. Green Chemistry, 2019, 21, 6527-6544.	9.0	55
39	Functional monolithic resins for the development of enantioselective versatile catalytic minireactors with long-term stability: TADDOL supported systems. Green Chemistry, 2006, 8, 717-726.	9.0	54
40	Efficient Chirality Switching in the Addition of Diethylzinc to Aldehydes in the Presence of Simple Chiral αâ€Amino Amides. Angewandte Chemie - International Edition, 2007, 46, 9002-9005.	13.8	54
41	Synthesis and Protonation Behavior of 26-Membered Oxaaza and Polyaza Macrocycles Containing Two Heteroaromatic Units of 3,5-Disubstituted Pyrazole or 1-Benzylpyrazole. A Potentiometric and1H and13C NMR Study. Journal of Organic Chemistry, 1999, 64, 6135-6146.	3.2	53
42	Thermodynamics of sulfate anion binding by macrocyclic polyammonium receptors. Perkin Transactions II RSC, 2001, , 1765-1770.	1.1	53
43	Nickel complexes from α-amino amides as efficient catalysts for the enantioselective Et2Zn addition to benzaldehyde. Tetrahedron Letters, 2003, 44, 6891-6894.	1.4	53
44	Understanding the Expression of Molecular Chirality in the Self-Assembly of a Peptidomimetic Organogelator. European Journal of Organic Chemistry, 2005, 2005, 481-485.	2.4	52
45	Structurally disfavoured pseudopeptidic macrocycles through anion templation. Chemical Communications, 2011, 47, 283-285.	4.1	51
46	Supported ionic liquid-like phases as organocatalysts for the solvent-free cyanosilylation of carbonyl compounds: from batch to continuous flow process. Green Chemistry, 2014, 16, 1639.	9.0	51
47	Polymer Cocktail: A Multitask Supported Ionic Liquid‣ike Species to Facilitate Multiple and Consecutive CC Coupling Reactions. Advanced Synthesis and Catalysis, 2010, 352, 3013-3021.	4.3	50
48	Selective recognition of carboxylate anions by polyammonium receptors in aqueous solution. Criteria for selectivity in molecular recognition. Journal of the Chemical Society Perkin Transactions II, 1994, , 569-577.	0.9	49
49	Efficient syntheses of new chiral peptidomimetic macrocycles through a configurationally driven preorganization. Tetrahedron Letters, 2005, 46, 7781-7785.	1.4	49
50	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands. Journal of Organic Chemistry, 2005, 70, 5536-5544.	3.2	49
51	From Salts to Ionic Liquids by Systematic Structural Modifications: A Rational Approach Towards the Efficient Modular Synthesis of Enantiopure Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 836-847.	3.3	49
52	Pseudopeptidic fluorescent on-off pH sensor based on pyrene excimer emission: Imaging of acidic cellular organelles. Sensors and Actuators B: Chemical, 2016, 234, 633-640.	7.8	47
53	Structural Diversity in the Selfâ€Assembly of Pseudopeptidic Macrocycles. Chemistry - A European Journal, 2010, 16, 1246-1255.	3.3	46
54	Unraveling the Molecular Recognition of Amino Acid Derivatives by a Pseudopeptidic Macrocycle: ESI-MS, NMR, Fluorescence, and Modeling Studies. Journal of Organic Chemistry, 2009, 74, 6130-6142.	3.2	44

#	Article	IF	CITATIONS
55	Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry, 2003, 14, 773-778.	1.8	43
56	Synthesis and protonation behaviour of the macrocycle 2,6,10,13,17,21-hexaaza[22]metacyclophane. Thermodynamic and NMR studies on the interaction of 2,6,10,13,17,21-hexaaza[22]metacyclophane and on the open-chain polyamine 4,8,11,15-tetraazaoctadecane-1,18-diamine with ATP, ADP and AMP. Inorganica Chimica Acta, 1996, 246, 287-294.	2.4	41
57	Polyazacyclophanes. 2,6,9,13-Tetraaza[14] paracyclophane as a cationic and anionic receptor. Journal of the Chemical Society Perkin Transactions II, 1993, , 749-755.	0.9	40
58	Thermodynamic and Steady-State Fluorescence Emission Studies on Metal Complexes of Receptors Containing Benzene Subunits. Inorganic Chemistry, 1998, 37, 3935-3942.	4.0	40
59	Protonation tendencies of azaparacyclophanes. A thermodynamic and NMR study. Journal of the Chemical Society Perkin Transactions II, 1994, , 1253-1259.	0.9	39
60	Synthesis of new chiral imidazolium salts derived from amino acids: their evaluation in chiral molecular recognition. Tetrahedron: Asymmetry, 2009, 20, 999-1003.	1.8	39
61	Singlet oxygen generation using a porous monolithic polymer supported photosensitizer: potential application to the photodynamic destruction of melanoma cells. Photochemical and Photobiological Sciences, 2009, 8, 37-44.	2.9	38
62	Organogel–quantum dots hybrid materials displaying fluorescence sensitivity and structural stability towards nitric oxide. Soft Matter, 2012, 8, 4373.	2.7	38
63	Efficient Synthesis of Pseudopeptidic Molecular Cages. Chemistry - A European Journal, 2012, 18, 5496-5500.	3.3	37
64	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chemical Communications, 2015, 51, 17361-17374.	4.1	37
65	Highly selective biocatalytic synthesis of monoacylglycerides in sponge-like ionic liquids. Green Chemistry, 2017, 19, 390-396.	9.0	37
66	Copper(ii) complexes of bis(amino amide) ligands: effect of changes in the amino acid residue. Dalton Transactions, 2012, 41, 6764.	3.3	36
67	Designed Folding of Pseudopeptides: The Transformation of a Configurationally Driven Preorganization into a Stereoselective Multicomponent Macrocyclization Reaction. Chemistry - A European Journal, 2008, 14, 8879-8891.	3.3	35
68	Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chemical Communications, 2012, 48, 2210.	4.1	34
69	Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids. Catalysis Today, 2020, 346, 87-92.	4.4	34
70	Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: easy control of size and stability. Physical Chemistry Chemical Physics, 2011, 13, 14831.	2.8	33
71	Supported N-heterocyclic carbene rhodium complexes as highly selective hydroformylation catalysts. Journal of Molecular Catalysis A, 2009, 309, 131-136.	4.8	32
72	Coordination of Cu ²⁺ lons to <i>C</i> ₂ Symmetric Pseudopeptides Derived from Valine. Inorganic Chemistry, 2010, 49, 7841-7852.	4.0	32

#	Article	IF	CITATIONS
73	Tuning Chloride Binding, Encapsulation, and Transport by Peripheral Substitution of Pseudopeptidic Tripodal Small Cages. Chemistry - A European Journal, 2012, 18, 16728-16741.	3.3	32
74	A turn-on fluorescent indicator for citrate with micromolar sensitivity. Dalton Transactions, 2007, , 4027.	3.3	31
75	Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014, 2014, 5356-5363.	2.4	31
76	Stereoselective recognition of the Ac-Glu-Tyr-OH dipeptide by pseudopeptidic cages. Organic and Biomolecular Chemistry, 2015, 13, 11721-11731.	2.8	31
77	Stimulus responsive self-assembly of Gemini Amphiphilic Pseudopeptides. Soft Matter, 2011, 7, 10737.	2.7	30
78	Clean Enzymatic Preparation of Oxygenated Biofuels from Vegetable and Waste Cooking Oils by Using Spongelike Ionic Liquids Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 6125-6132.	6.7	30
79	Ratiometric fluorescence sensing of phenylalanine derivatives by synthetic macrocyclic receptors. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 61-67.	3.9	28
80	Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catalysis Today, 2015, 255, 97-101.	4.4	28
81	Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 2015, 5, 34415-34423.	3.6	28
82	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	28
83	Imidazole and Imidazolium Antibacterial Drugs Derived from Amino Acids. Pharmaceuticals, 2020, 13, 482.	3.8	28
84	Simple and straightforward synthesis of novel enantiopure ionic liquids via efficient enzymatic resolution of (±)-2-(1H-imidazol-1-yl)cyclohexanol. Tetrahedron Letters, 2007, 48, 5251-5254.	1.4	27
85	Pseudopeptidic Cages as Receptors for <i>N</i> -Protected Dipeptides. Journal of Organic Chemistry, 2014, 79, 4590-4601.	3.2	27
86	Microwave-Assisted Selective Oxidation of 1-Phenyl Ethanol in Water Catalyzed by Metal Nanoparticles Immobilized onto Supported Ionic Liquidlike Phases. ACS Catalysis, 2015, 5, 4743-4750.	11.2	27
87	Functionalization of polystyrene resins with chiral fragments derived from tartaric acid Tetrahedron, 1994, 50, 7535-7542.	1.9	26
88	Template Effects in S _N 2 Displacements for the Preparation of Pseudopeptidic Macrocycles. Chemistry - A European Journal, 2012, 18, 2409-2422.	3.3	26
89	Green bioprocesses in sponge-like ionic liquids. Catalysis Today, 2015, 255, 54-59.	4.4	26
90	A Sensitive Colorimetric Method for the Study of Polystyrene Merrifield Resins and Chloromethylated Macroporous Monolithic Polymers. ACS Combinatorial Science, 2004, 6, 859-861.	3.3	25

#	Article	IF	CITATIONS
91	Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors. RSC Advances, 2012, 2, 8721.	3.6	25
92	Chiral Imidazolium Receptors for Citrate and Malate: The Importance of the Preorganization. Journal of Organic Chemistry, 2014, 79, 9141-9149.	3.2	25
93	The synthesis of new fluorescent bichromophoric compounds as ratiometric pH probes for intracellular measurements. Organic and Biomolecular Chemistry, 2015, 13, 7736-7749.	2.8	25
94	Quantum dot–polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorganica Chimica Acta, 2012, 381, 212-217.	2.4	24
95	An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Advances, 2013, 3, 13123.	3.6	24
96	LCST-type polymers based on chiral-polymeric ionic liquids. Chemical Communications, 2014, 50, 10683.	4.1	24
97	Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic and Biomolecular Chemistry, 2015, 13, 5450-5459.	2.8	24
98	Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO ₂ to Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 2309-2318.	6.7	23
99	Crystal structures of the HCl salts of pseudopeptidic macrocycles display "knobs into holes― hydrophobic interactions between aliphatic side chains. CrystEngComm, 2009, 11, 735.	2.6	22
100	Effects of gemini amphiphilic pseudopeptides on model lipid membranes: A Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2013, 102, 659-666.	5.0	22
101	Tight and Selective Caging of Chloride Ions by a Pseudopeptidic Host. Chemistry - A European Journal, 2014, 20, 7458-7464.	3.3	22
102	Poly(acrylamide-homocysteine thiolactone) as a synthetic platform for the preparation of polymeric ionic liquids by post ring-opening-orthogonal modifications. Polymer Chemistry, 2017, 8, 4789-4797.	3.9	22
103	TADDOL-TiCl2 catalyzed Diels-Alder reactions: unexpected influence of the substituents in the 2-position of the dioxolane ring on the stereoselectivity. Tetrahedron: Asymmetry, 1997, 8, 2561-2570.	1.8	21
104	Novel peptidomimetic macrocycles showing exciplex fluorescence. Tetrahedron, 2007, 63, 9493-9501.	1.9	21
105	Properties of metal centers in low-symmetry complexes of p-azacyclophanes. Supramolecular Chemistry, 1996, 6, 257-266.	1.2	20
106	Synthesis and Evaluation of Pseudopeptidic Fluorescence pH Probes for Acidic Cellular Organelles: In Vivo Monitoring of Bacterial Phagocytosis by Multiparametric Flow Cytometry. European Journal of Organic Chemistry, 2010, 2010, 5967-5979.	2.4	20
107	New polymer-supported photocatalyst with improved compatibility with polar solvents. Synthetic application using solar light as energy source. Catalysis Communications, 2010, 11, 1081-1084.	3.3	20
108	An enzymatic biomimetic system: enhancement of catalytic efficiency with new polymeric chiral ionic liquids synthesised by controlled radical polymerisation. Polymer Chemistry, 2014, 5, 1437-1446.	3.9	20

#	Article	IF	CITATIONS
109	Flow Biocatalytic Processes in Ionic Liquids and Supercritical Fluids. Mini-Reviews in Organic Chemistry, 2017, 14, 65-74.	1.3	20
110	Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. Journal of Physical Chemistry C, 2010, 114, 7030-7037.	3.1	19
111	A general route for the preparation of polymer-supported N-tosyl aminoalcohols and their use as chiral auxiliaries. Tetrahedron Letters, 2001, 42, 1673-1675.	1.4	18
112	Recognition of Free Tryptophan in Water by Synthetic Pseudopeptides: Fluorescence and Thermodynamic Studies. Chemistry - A European Journal, 2014, 20, 7465-7478.	3.3	18
113	Gas chromatographic analysis of fatty acid methyl esters of milk fat by an ionic liquid derived from L-phenylalanine as the stationary phase. Talanta, 2015, 143, 212-218.	5.5	18
114	Macrocycle Synthesis by Chloride-Templated Amide Bond Formation. Journal of Organic Chemistry, 2016, 81, 2143-2147.	3.2	18
115	Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-fibers fabricated by electrospinning. Journal of Materials Chemistry A, 2017, 5, 9733-9744.	10.3	18
116	Polymer-supported chiral α-amino amides for the asymmetric addition of diethylzinc to aldehydes: Transforming an inactive homogeneous system into an efficient catalyst. Applied Catalysis A: General, 2013, 462-463, 23-30.	4.3	17
117	Dimethyl carbonate as a non-innocent benign solvent for the multistep continuous flow synthesis of amino alcohols. Reaction Chemistry and Engineering, 2018, 3, 572-578.	3.7	17
118	Supported Ionic Liquid‣ike Phases (SILLPs) as Immobilised Catalysts for the Multistep and Multicatalytic Continuous Flow Synthesis of Chiral Cyanohydrins. ChemCatChem, 2019, 11, 1955-1962.	3.7	17
119	Rose Bengal Immobilized on Supported Ionicâ€Liquidâ€like Phases: An Efficient Photocatalyst for Batch and Flow Processes. ChemSusChem, 2019, 12, 3996-4004.	6.8	16
120	Development of small focused libraries of supported amino alcohols as an efficient strategy for the optimization of enantioselective heterogeneous catalysts for the ZnEt2 addition to benzaldehyde. Tetrahedron, 2003, 59, 1797-1804.	1.9	15
121	Photophysical study of a cyclophane displaying intramolecular exciplex emission. Chemical Physics, 2004, 302, 287-294.	1.9	15
122	A simple peptidomimetic that self-associates on the solid state to form a nanoporous architecture containing chiral π-channels. CrystEngComm, 2010, 12, 1722.	2.6	15
123	lonic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 2016, 213, 887-897.	5.2	15
124	Supramolecular protection from the enzymatic tyrosine phosphorylation in a polypeptide. Chemical Communications, 2016, 52, 8142-8145.	4.1	15
125	Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 2019, 21, 17923-17932.	2.8	15
126	On the origin of changes in topicity observed in Diels–Alder reactions catalyzed by Ti–TADDOLates. Tetrahedron: Asymmetry, 2000, 11, 4885-4893.	1.8	14

#	Article	IF	CITATIONS
127	CO2fixation and activation by metal complexes of small polyazacyclophanes. Journal of Physical Organic Chemistry, 2001, 14, 495-500.	1.9	14
128	Chemo-enzymatic production of omega-3 monoacylglycerides using sponge-like ionic liquids and supercritical carbon dioxide. Green Chemistry, 2020, 22, 5701-5710.	9.0	14
129	Urea-Based Low-Molecular-Weight Pseudopeptidic Organogelators for the Encapsulation and Slow Release of (<i>R</i>)-Limonene. Journal of Agricultural and Food Chemistry, 2020, 68, 7051-7061.	5.2	14
130	Photoluminescence of CdSe/ZnS core–shell quantum dots stabilized in water with a pseudopeptidic gemini surfactant. Nanoscale, 2011, 3, 3613.	5.6	13
131	Minimalistic amino amides as models to study N–Hâ⊄Ï€ interactions and their implication in the side chain folding of pseudopeptidic molecules. RSC Advances, 2013, 3, 11556.	3.6	13
132	Singlet oxygen generation by photoactive polymeric microparticles with enhanced aqueous compatibility. Environmental Science and Pollution Research, 2014, 21, 11884-11892.	5.3	13
133	Development of efficient processes under flow conditions based on catalysts immobilized onto monolithic supported ionic liquid-like phases. Pure and Applied Chemistry, 2009, 81, 1991-2000.	1.9	12
134	Zinc(ii) coordination polymers with pseudopeptidic ligands. CrystEngComm, 2011, 13, 6997.	2.6	12
135	Synthesis and organogelating ability of bis-urea pseudopeptidic compounds. Tetrahedron, 2013, 69, 2302-2308.	1.9	12
136	Chemoenzymatic synthesis of optically active 2-(2′- or 4′-substituted-1H-imidazol-1-yl)cycloalkanols: chiral additives for (l)-proline. Catalysis Science and Technology, 2013, 3, 2596.	4.1	12
137	Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells. Organic and Biomolecular Chemistry, 2014, 12, 823-831.	2.8	12
138	Acyclic Pseudopeptidic Hosts as Molecular Receptors and Transporters for Anions. European Journal of Organic Chemistry, 2015, 2015, 5150-5158.	2.4	12
139	A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin. Journal of Physical Chemistry B, 2015, 119, 6668-6679.	2.6	12
140	Sustainable chemo-enzymatic synthesis of glycerol carbonate (meth)acrylate from glycidol and carbon dioxide enabled by ionic liquid technologies. Green Chemistry, 2021, 23, 4191-4200.	9.0	12
141	Synthetic application of photoactive porous monolithic polymers. Tetrahedron Letters, 2010, 51, 3360-3363.	1.4	11
142	Supramolecular Interactions Based on Ionic Liquids for Tuning of the Catalytic Efficiency of (<scp>l</scp>)-Proline. ACS Sustainable Chemistry and Engineering, 2016, 4, 6062-6071.	6.7	11
143	Cu ²⁺ , Zn ²⁺ , and Ni ²⁺ Complexes of <i>C</i> ₂ -Symmetric Pseudopeptides with an Aromatic Central Spacer. Inorganic Chemistry, 2016, 55, 7617-7629.	4.0	11
144	Novel fluorescent anthracene–bodipy dyads displaying sensitivity to pH and turn-on behaviour towards Cu(<scp>ii</scp>) ions. Organic and Biomolecular Chemistry, 2017, 15, 3013-3024.	2.8	11

#	Article	IF	CITATIONS
145	New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation. Chemical Communications, 2018, 54, 2385-2388.	4.1	11
146	Pseudopeptidic macrocycles as cooperative minimalistic synzyme systems for the remarkable activation and conversion of CO ₂ in the presence of the chloride anion. Green Chemistry, 2020, 22, 4697-4705.	9.0	11
147	A Green Approach for Producing Solvent-free Anisyl Acetate by Enzymecatalyzed Direct Esterification in Sponge-like Ionic Liquids Under Conventional and Microwave Heating. Current Green Chemistry, 2013, 1, 145-154.	1.1	11
148	A simple, safe and robust system for hydrogenation "without high-pressure gases―under batch and flow conditions using a liquid organic hydrogen carrier. Green Chemistry, 2022, 24, 2036-2043.	9.0	11
149	Styrylpyrylium Dyes as Solventâ€ S ensitive Molecules Displaying Dual Fluorescence. European Journal of Organic Chemistry, 2017, 2017, 4864-4870.	2.4	10
150	Doubly chiral pseudopeptidic macrobicyclic molecular cages: Water-assisted dynamic covalent self-assembly and chiral self-sorting. CheM, 2022, 8, 2023-2042.	11.7	10
151	New CSPs based on peptidomimetics: efficient chiral selectors in enantioselective separations. Polymer Bulletin, 2002, 48, 9-15.	3.3	9
152	Structure â¿ membrane activity relationship in a family of peptide-based gemini amphiphiles: An insight from experimental and theoretical model systems. Colloids and Surfaces B: Biointerfaces, 2016, 146, 54-62.	5.0	9
153	Improving photocatalytic oxygenation mediated by polymer supported photosensitizers using semiconductor quantum dots as â€īlight antennas'. RSC Advances, 2017, 7, 35154-35158.	3.6	9
154	Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 2019, 6, 1214-1225.	4.5	9
155	Supported ionic liquid-like phases as efficient solid ionic solvents for the immobilisation of alcohol dehydrogenases towards the development of stereoselective bioreductions. Green Chemistry, 2021, 23, 5609-5617.	9.0	9
156	Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 2012, 358, 1228-1237.	3.1	8
157	Coordination behaviour of new open chain and macrocyclic peptidomimetic compounds with copper(<scp>ii</scp>). RSC Advances, 2015, 5, 72579-72589.	3.6	8
158	Characterization of amine stabilized CdSe/ZnS core–shell quantum dots by using triarylpyrylium dyes. RSC Advances, 2016, 6, 56064-56068.	3.6	8
159	Cu ²⁺ recognition by N,N′-benzylated bis(amino amides). Dalton Transactions, 2017, 46, 2660-2669.	3.3	8
160	The role of the side chain in the conformational and self-assembly patterns of <i>C</i> ₂ -symmetric Val and Phe pseudopeptidic derivatives. CrystEngComm, 2019, 21, 2398-2408.	2.6	8
161	Highly Selective Anion Template Effect in the Synthesis of Constrained Pseudopeptidic Macrocyclic Cyclophanes. Journal of Organic Chemistry, 2020, 85, 1138-1145.	3.2	8
162	The Role of the Amino Acid-Derived Side Chain in the Preorganization of <i>C</i> ₂ -Symmetric Pseudopeptides: Effect on S _N 2 Macrocyclization Reactions. Journal of Organic Chemistry, 2014, 79, 559-570.	3.2	7

#	Article	IF	CITATIONS
163	Synthesis of new fluorescent pyrylium dyes and study of their interaction with <i>N</i> -protected amino acids. New Journal of Chemistry, 2020, 44, 9509-9521.	2.8	7
164	Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. Journal of Molecular Liquids, 2022, 348, 118051.	4.9	7
165	A test for the coexistence of reactive intermediates with different molecular composition in chiral Lewis acid-catalysed reactions: the case of Ti-TADDOLate-catalysed Diels–Alder reactions. Tetrahedron: Asymmetry, 2001, 12, 1829-1835.	1.8	6
166	Highly stable oil-in-water emulsions with a gemini amphiphilic pseudopeptide. RSC Advances, 2015, 5, 36890-36893.	3.6	6
167	Divergent Multistep Continuous Synthetic Transformations of Allylic Alcohol Enabled by Catalysts Immobilized in Ionic Liquid Phases ChemSusChem, 2019, 12, 1684-1691.	6.8	6
168	Polymeric Ionic Liquids Derived from L-Valine for the Preparation of Highly Selective Silica-Supported Stationary Phases in Gas Chromatography. Polymers, 2020, 12, 2348.	4.5	6
169	Dual stereocontrolled alkylation of aldehydes with polystyrene-supported nickel complexes derived from α-amino amides. RSC Advances, 2015, 5, 14653-14662.	3.6	5
170	Synthesis of second-generation self-assembling Gemini Amphiphilic Pseudopeptides. Journal of Colloid and Interface Science, 2020, 564, 52-64.	9.4	5
171	The Suitability of Lipases for the Synthesis of Bioactive Compounds with Cosmeceutical Applications. Mini-Reviews in Organic Chemistry, 2021, 18, 515-528.	1.3	5
172	Supported ILs and Materials Based on ILs for the Development of Green Synthetic Processes and Procedures. RSC Green Chemistry, 2019, , 289-318.	0.1	5
173	Sensing, Transport and Other Potential Biomedical Applications of Pseudopeptides. Current Medicinal Chemistry, 2019, 26, 4065-4097.	2.4	5
174	Fluorescence and mass spectrometry studies of the interaction between naproxen and synthetic pseudopeptidic models in organic media. Tetrahedron, 2009, 65, 7801-7808.	1.9	4
175	The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature. Photochemical and Photobiological Sciences, 2017, 16, 1320-1326.	2.9	4
176	Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1924-1935.	2.2	4
177	Preparation of Nanofibers Mats Derived from Task-Specific Polymeric Ionic Liquid for Sensing and Catalytic Applications. Polymers, 2021, 13, 3110.	4.5	4
178	Structure–antitumor activity relationships of tripodal imidazolium-amino acid based salts. Effect of the nature of the amino acid, amide substitution and anion. Organic and Biomolecular Chemistry, 2021, 19, 10575-10586.	2.8	4
179	Continuous Flow Processes as an Enabling Tool for the Synthesis of Constrained Pseudopeptidic Macrocycles. Journal of Organic Chemistry, 2022, 87, 3519-3528.	3.2	4
180	Imidazolium based gemini amphiphiles derived from L-valine. Structural elements and surfactant properties. Journal of Molecular Liquids, 2021, 341, 117434.	4.9	3

#	Article	IF	CITATIONS
181	Immobilized Supramolecular Systems as Efficient Synzymes for CO ₂ Activation and Conversion. Advanced Sustainable Systems, 2022, 6, .	5.3	3
182	The effect of protonation in a family of peptide based gemini amphiphiles on the interaction in Langmuir films. Journal of Molecular Liquids, 2019, 284, 357-365.	4.9	2
183	Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules, 2021, 26, 4190.	3.8	2
184	Unveiling anion-induced folding in tripodal imidazolium receptors by ion-mobility mass spectrometry. Chemical Communications, 2021, 57, 8616-8619.	4.1	2
185	Rational Design of Simple Organocatalysts for the HSiCl3 Enantioselective Reduction of (E)-N-(1-Phenylethylidene)aniline. Molecules, 2021, 26, 6963.	3.8	2
186	Polymer-Supported Organocatalysts. , 0, , 245-308.		1
187	Triplet Excited State Behavior of Naphthalene-Based Pseudopeptides in the Presence of Energy Donors. Journal of Physical Chemistry B, 2012, 116, 9957-9962.	2.6	1

188 The 14th EuCheMS international conference on chemistry and the environment (ICCE 2013, Barcelona,) Tj ETQq0 9.9 rgBT /Qverlock 10

189	Unravelling the Supramolecular Driving Forces in the Formation of CO2-Responsive Pseudopeptidic Low-Molecular-Weight Hydrogelators. Gels, 2022, 8, 390.		4.5	0	
-----	--	--	-----	---	--