Christian Hölscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299913/publications.pdf Version: 2024-02-01

		13865	20961
201	15,301	67	115
papers	citations	h-index	g-index
211	211	211	14212
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aβ42â€driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Reports, 2006, 7, 940-946.	4.5	832
2	An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease–associated Al² oligomers. Journal of Clinical Investigation, 2012, 122, 1339-1353.	8.2	697
3	The Diabetes Drug Liraglutide Prevents Degenerative Processes in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 6587-6594.	3.6	559
4	Intranasal Insulin as a Treatment for Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs, 2013, 27, 505-514.	5.9	402
5	Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain, 2016, 139, 891-907.	7.6	389
6	Stimulation on the Positive Phase of Hippocampal Theta Rhythm Induces Long-Term Potentiation That Can Be Depotentiated by Stimulation on the Negative Phase in Area CA1 <i>In Vivo</i> . Journal of Neuroscience, 1997, 17, 6470-6477.	3.6	382
7	Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends in Neurosciences, 1997, 20, 298-303.	8.6	378
8	Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neuroscience, 2012, 13, 33.	1.9	372
9	TNF-α Mediates PKR-Dependent Memory Impairment and Brain IRS-1 Inhibition Induced by Alzheimer's β-Amyloid Oligomers in Mice and Monkeys. Cell Metabolism, 2013, 18, 831-843.	16.2	340
10	Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Research Reviews, 2007, 56, 384-402.	9.0	322
11	Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease. Neuropharmacology, 2014, 76, 57-67.	4.1	267
12	Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer's disease. Behavioural Brain Research, 2009, 205, 265-271.	2.2	229
13	Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. Journal of Endocrinology, 2014, 221, T31-T41.	2.6	224
14	Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. NeuroReport, 2009, 20, 1161-1166.	1.2	213
15	Stress impairs performance in spatial water maze learning tasks. Behavioural Brain Research, 1999, 100, 225-235.	2.2	187
16	The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a nonâ€human primate model of Alzheimer's disease. Journal of Pathology, 2018, 245, 85-100.	4.5	180
17	Novel GLPâ€1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. Journal of Neuroscience Research, 2011, 89, 481-489.	2.9	178
18	Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: A link between diabetes and Alzheimer's disease. European Journal of Pharmacology, 2010, 630, 158-162.	3.5	163

#	Article	IF	CITATIONS
19	Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience, 2015, 303, 42-50.	2.3	162
20	Potential Role of Glucagon-Like Peptide-1 (GLP-1) in Neuroprotection. CNS Drugs, 2012, 26, 871-882.	5.9	156
21	Untargeted Metabolomic Analysis of Human Plasma Indicates Differentially Affected Polyamine and L-Arginine Metabolism in Mild Cognitive Impairment Subjects Converting to Alzheimer's Disease. PLoS ONE, 2015, 10, e0119452.	2.5	156
22	An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neuroscience Letters, 1992, 145, 165-167.	2.1	150
23	Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiology of Aging, 2012, 33, 265-276.	3.1	144
24	Diabetes as a risk factor for Alzheimer's disease: insulin signalling impairment in the brain as an alternative model of Alzheimer's disease. Biochemical Society Transactions, 2011, 39, 891-897.	3.4	142
25	Blockade of Long-Term Potentiation by β-Amyloid Peptides in the CA1 Region of the Rat Hippocampus In Vivo. Journal of Neurophysiology, 2001, 85, 708-713.	1.8	140
26	Synaptic Plasticity in the Hippocampus of a APP/PS1 Mouse Model of Alzheimer's Disease Is Impaired in Old but Not Young Mice. PLoS ONE, 2010, 5, e9764.	2.5	136
27	Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietaryâ€induced obesity and insulin resistance. Diabetes, Obesity and Metabolism, 2010, 12, 891-899.	4.4	135
28	GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Reviews in the Neurosciences, 2012, 23, 1-11.	2.9	135
29	The Diabetes Drug Liraglutide Ameliorates Aberrant Insulin Receptor Localisation and Signalling in Parallel with Decreasing Both Amyloid-β Plaque and Glial Pathology in a Mouse Model of Alzheimer's Disease. NeuroMolecular Medicine, 2013, 15, 102-114.	3.4	134
30	GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. European Journal of Pharmacology, 2008, 587, 112-117.	3.5	131
31	Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease. Neuropharmacology, 2014, 86, 241-258.	4.1	130
32	Neuroprotective and antiâ€apoptotic effects of liraglutide on <scp>SH</scp> â€ <scp>SY</scp> 5Y cells exposed to methylglyoxal stress. Journal of Neurochemistry, 2014, 128, 459-471.	3.9	129
33	Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer's disease: study protocol for a randomised controlled trial (ELAD study). Trials, 2019, 20, 191.	1.6	127
34	Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology, 2018, 136, 251-259.	4.1	126
35	The effect of ageing on neurogenesis and oxidative stress in the APPswe/PS1deltaE9 mouse model of Alzheimer's disease. Brain Research, 2012, 1449, 83-93.	2.2	121
36	Liraglutide protects against amyloid-l ² protein-induced impairment of spatial learning and memory in rats. Neurobiology of Aging, 2013, 34, 576-588.	3.1	114

#	Article	IF	CITATIONS
37	Synaptic plasticity and learning and memory: LTP and beyond. Journal of Neuroscience Research, 1999, 58, 62-75.	2.9	110
38	Investigation of the Human Brain Metabolome to Identify Potential Markers for Early Diagnosis and Therapeutic Targets of Alzheimer's Disease. Analytical Chemistry, 2013, 85, 1803-1811.	6.5	108
39	Possible Causes of Alzheimer's Disease: Amyloid Fragments, Free Radicals, and Calcium Homeostasis. Neurobiology of Disease, 1998, 5, 129-141.	4.4	103
40	Chronic Treatment with the GLP1 Analogue Liraglutide Increases Cell Proliferation and Differentiation into Neurons in an AD Mouse Model. PLoS ONE, 2013, 8, e58784.	2.5	103
41	The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models ofAAlzheimer's disease. , 2014, 10, S47-S54.		102
42	Alzheimer's disease–like pathology has transient effects on the brain and blood metabolome. Neurobiology of Aging, 2016, 38, 151-163.	3.1	102
43	Metabolomic Profiling of Bile Acids in Clinical and Experimental Samples of Alzheimer's Disease. Metabolites, 2017, 7, 28.	2.9	102
44	Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease. Brain Research, 2018, 1678, 64-74.	2.2	98
45	Glucose-dependent insulinotropic polypeptide receptor knockout mice are impaired in learning, synaptic plasticity, and neurogenesis. Journal of Neurophysiology, 2011, 105, 1574-1580.	1.8	95
46	Incretin Analogues that have been Developed to Treat Type 2 Diabetes Hold Promise as a Novel Treatment Strategy for Alzheimers Disease. Recent Patents on CNS Drug Discovery, 2010, 5, 109-117.	0.9	94
47	Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behavioural Brain Research, 2015, 293, 96-106.	2.2	94
48	Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson's disease. European Journal of Pharmacology, 2015, 768, 21-27.	3.5	94
49	Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opinion on Investigational Drugs, 2020, 29, 333-348.	4.1	94
50	Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 157-171.	2.8	92
51	The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. European Journal of Pharmacology, 2013, 700, 42-50.	3.5	91
52	Insulin, incretins and other growth factors as potential novel treatments for Alzheimer's and Parkinson's diseases. Biochemical Society Transactions, 2014, 42, 593-599.	3.4	91
53	New roles for insulin-like hormones in neuronal signalling and protection: New hopes for novel treatments of Alzheimer's disease?. Neurobiology of Aging, 2010, 31, 1495-1502.	3.1	87
54	A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behavioural Brain Research, 2017, 327, 65-74.	2.2	87

#	Article	IF	CITATIONS
55	Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behavioural Brain Research, 2004, 154, 473-481.	2.2	86
56	Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet. International Journal of Obesity, 2010, 34, 1341-1344.	3.4	85
57	Reward modulates neuronal activity in the hippocampus of the rat. Behavioural Brain Research, 2003, 142, 181-191.	2.2	81
58	Time, Space and Hippocampal Functions. Reviews in the Neurosciences, 2003, 14, 253-84.	2.9	80
59	A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson′s disease by increasing expression of BNDF. Brain Research, 2016, 1634, 1-11.	2.2	79
60	Neuroprotective effects of the novel GLP-1 long acting analogue semaglutide in the MPTP Parkinson's disease mouse model. Neuropeptides, 2018, 71, 70-80.	2.2	78
61	Protease-Resistant Glucose-Dependent Insulinotropic Polypeptide Agonists Facilitate Hippocampal LTP and Reverse the Impairment of LTP Induced by Beta-Amyloid. Journal of Neurophysiology, 2008, 99, 1590-1595.	1.8	77
62	(Val8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. European Journal of Pharmacology, 2012, 674, 280-286.	3.5	77
63	A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease. European Journal of Pharmacology, 2017, 812, 82-90.	3.5	77
64	Insulin Signaling Impairment in the Brain as a Risk Factor in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 88.	3.4	77
65	A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e54769.	2.5	76
66	Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson's disease. Neuropharmacology, 2018, 133, 385-394.	4.1	75
67	Development of Beta-Amyloid-induced Neurodegeneration in Alzheimer's Disease and Novel Neuroprotective Strategies. Reviews in the Neurosciences, 2005, 16, 181-212.	2.9	74
68	A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain. NeuroReport, 2016, 27, 384-391.	1.2	71
69	Therapeutic Potential of Baicalein in Alzheimer's Disease and Parkinson's Disease. CNS Drugs, 2017, 31, 639-652.	5.9	70
70	Soluble beta-amyloid[25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. European Journal of Pharmacology, 2007, 561, 85-90.	3.5	68
71	Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice. International Journal of Obesity, 2013, 37, 678-684.	3.4	68
72	Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology, 2014, 86, 22-30.	4.1	68

#	Article	IF	CITATIONS
73	Prolonged GIP receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. European Journal of Pharmacology, 2011, 650, 688-693.	3.5	66
74	Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque. European Journal of Neuroscience, 2003, 18, 2037-2046.	2.6	63
75	The Role of GLP-1 in Neuronal Activity and Neurodegeneration. Vitamins and Hormones, 2010, 84, 331-354.	1.7	61
76	Neuroprotective effects of a GIP analogue in the MPTP Parkinson's disease mouse model. Neuropharmacology, 2016, 101, 255-263.	4.1	61
77	First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer's disease. , 2014, 10, S33-S37.		60
78	Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neuroscience and Biobehavioral Reviews, 1999, 23, 399-410.	6.1	59
79	Neuroprotective effects of D-Ala2GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model. Alzheimer's Research and Therapy, 2013, 5, 20.	6.2	59
80	Age-Associated Changes of Brain Copper, Iron, and Zinc in Alzheimer's Disease and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2014, 42, 1407-1413.	2.6	59
81	Hepcidin Treatment Modulates the Expression of Divalent Metal Transporter-1, Ceruloplasmin, and Ferroportin-1 in the Rat Cerebral Cortex and Hippocampus. Biological Trace Element Research, 2011, 143, 1581-1593.	3.5	58
82	A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of Parkinson's disease. Neuropharmacology, 2017, 117, 238-248.	4.1	58
83	Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in <scp>SH</scp> â€ <scp>SY</scp> 5Y cells. Journal of Neurochemistry, 2016, 139, 55-67.	3.9	57
84	Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behavioural Brain Research, 2014, 272, 196-204.	2.2	56
85	A novel GLPâ€1/GIP/Gcg triagonist reduces cognitive deficits and pathology in the 3xTg mouse model of Alzheimer's disease. Hippocampus, 2018, 28, 358-372.	1.9	55
86	Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. Journal of Natural Medicines, 2021, 75, 540-552.	2.3	55
87	Protective properties of GLPâ€1 and associated peptide hormones in neurodegenerative disorders. British Journal of Pharmacology, 2022, 179, 695-714.	5.4	55
88	Quinolinic acid lesion of the rat entorhinal cortex pars medialis produces selective amnesia in allocentric working memory (WM), but not in egocentric WM. Behavioural Brain Research, 1994, 63, 187-194.	2.2	54
89	Effects of acute and chronic administration of GIP analogues on cognition, synaptic plasticity and neurogenesis in mice. European Journal of Pharmacology, 2012, 674, 294-306.	3.5	54
90	Neuroprotective effects of geniposide on Alzheimer's disease pathology. Reviews in the Neurosciences, 2015, 26, 371-83.	2.9	53

#	Article	IF	CITATIONS
91	Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology, 2019, 144, 377-387.	4.1	52
92	GIP has neuroprotective effects in Alzheimer and Parkinson's disease models. Peptides, 2020, 125, 170184.	2.4	52
93	D-Ala2CIP Facilitated Synaptic Plasticity and Reduces Plaque Load in Aged Wild Type Mice and in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2013, 35, 267-283.	2.6	51
94	Metabolic signatures of human Alzheimer's disease (AD): 1H NMR analysis of the polar metabolome of post-mortem brain tissue. Metabolomics, 2014, 10, 744-753.	3.0	49
95	DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer's disease. European Journal of Pharmacology, 2018, 827, 215-226.	3.5	49
96	Magnolol alleviates Alzheimer's disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomedicine and Pharmacotherapy, 2020, 124, 109886.	5.6	48
97	Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learning and Memory, 2005, 12, 450-455.	1.3	46
98	Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease. Reviews in the Neurosciences, 2016, 27, 61-70.	2.9	46
99	GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides, 2018, 100, 101-107.	2.4	46
100	Inhibitors of Cyclooxygenases produce Amnesia for a Passive Avoidance Task in the Chick. European Journal of Neuroscience, 1995, 7, 1360-1365.	2.6	44
101	Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Scientific Reports, 2017, 7, 16158.	3.3	44
102	The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology, 2019, 158, 107748.	4.1	44
103	The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 523-542.	2.8	43
104	Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice. Peptides, 2012, 35, 1-8.	2.4	42
105	D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation. European Journal of Pharmacology, 2017, 797, 162-172.	3.5	41
106	Restoration of Cerebral and Systemic Microvascular Architecture in <scp>APP</scp> / <scp>PS</scp> 1 Transgenic Mice Following Treatment with Liraglutide ^{â,,¢} . Microcirculation, 2015, 22, 133-145.	1.8	40
107	Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behavioral and Neural Biology, 1994, 61, 225-232.	2.2	39
108	Effects of the glucagon-like polypeptide-1 analogue (Val8)GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain. Brain Research, 2012, 1473, 204-213.	2.2	39

#	Article	IF	CITATIONS
109	Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson's disease mouse model. Behavioural Brain Research, 2015, 293, 107-113.	2.2	39
110	Inactivation of the rat dorsal striatum impairs performance in spatial tasks and alters hippocampal theta in the freely moving rat. Behavioural Brain Research, 2005, 164, 73-82.	2.2	38
111	Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by Status epilepticus. Epilepsy Research, 2018, 142, 45-52.	1.6	38
112	1H NMR metabolomics investigation of an Alzheimer's disease (AD) mouse model pinpoints important biochemical disturbances in brain and plasma. Metabolomics, 2013, 9, 974-983.	3.0	37
113	A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat. NeuroReport, 2016, 27, 23-32.	1.2	37
114	Therapeutic Potential of Genipin in Central Neurodegenerative Diseases. CNS Drugs, 2016, 30, 889-897.	5.9	37
115	Neuroprotective and restorative properties of the GLP-1/GIP dual agonist DA-JC1 compared with a GLP-1 single agonist in Alzheimer's disease. Neuropharmacology, 2020, 162, 107813.	4.1	37
116	Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25–35) are dependent on stimulation-protocol and genetic background. Experimental Brain Research, 2007, 179, 621-630.	1.5	36
117	The novel GLPâ€1/GIP analogue DA5â€CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain and Behavior, 2020, 10, e01505.	2.2	36
118	Long-term potentiation: A good model for learning and memory?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1997, 21, 47-68.	4.8	35
119	Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer's subjects?. Alzheimer's Research and Therapy, 2021, 13, 47.	6.2	32
120	Activation of group-II metabotropic glutamate receptors blocks induction of long-term potentiation and depotentiation in area CA1 of the rat in vivo. European Journal of Pharmacology, 1997, 322, 155-163.	3.5	31
121	Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-Î ³ and PPAR-α. Biomedicine and Pharmacotherapy, 2020, 127, 110155.	5.6	31
122	Inhibitors of PLA2 and NO synthase cooperate in producing amnesia of a spatial task. NeuroReport, 1995, 6, 730-732.	1.2	30
123	l-AP4 (l-(+)-2-amino-4-phosphonobutyric acid) induced impairment of spatial learning in the rat is antagonized by MAP4 ((S)-2-amino-2methyl-4-phosphonobutanoic acid). Behavioural Brain Research, 1996, 81, 69-79.	2.2	30
124	Lixisenatide attenuates the detrimental effects of amyloid \hat{l}^2 protein on spatial working memory and hippocampal neurons in rats. Behavioural Brain Research, 2017, 318, 28-35.	2.2	30
125	Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 614828.	2.8	30
126	Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study. PLoS ONE, 2014, 9, e88003.	2.5	30

#	Article	IF	CITATIONS
127	Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. European Journal of Pharmacology, 2015, 765, 284-290.	3.5	29
128	The Dual GLP-1/GIP Receptor Agonist DA4-JC Shows Superior Protective Properties Compared to the GLP-1 Analogue Liraglutide in the APP/PS1 Mouse Model of Alzheimer's Disease. American Journal of Alzheimer's Disease and Other Dementias, 2020, 35, 153331752095304.	1.9	29
129	Coexistences of insulin signaling-related proteins and choline acetyltransferase in neurons. Brain Research, 2009, 1249, 237-243.	2.2	28
130	New animal models of Alzheimer's disease that display insulin desensitization in the brain. Reviews in the Neurosciences, 2013, 24, 607-15.	2.9	27
131	Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Reviews in the Neurosciences, 2016, 27, 689-711.	2.9	27
132	The Novel DA–CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. Journal of Alzheimer's Disease, 2018, 66, 195-218.	2.6	26
133	The GLPâ€1/GIP dualâ€receptor agonist DA5â€CH inhibits the NFâ€₽B inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLPâ€1 singleâ€receptor agonist NLYO1. Brain and Behavior, 2021, 11, e2231.	2.2	26
134	Inhibitors of metabotropic glutamate receptors produce amnestic effects in chicks. NeuroReport, 1994, 5, 1037-1040.	1.2	25
135	Perirhinal Cortex Neuronal Activity is Actively Related to Working Memory in the Macaque. Neural Plasticity, 2002, 9, 41-51.	2.2	25
136	Glucagon-like peptide-1 receptor agonists as neuroprotective agents for ischemic stroke: a systematic scoping review. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 14-30.	4.3	25
137	Quantitative analysis of iron concentration and expression of ferroportin 1 in the cortex and hippocampus of rats induced by cerebral ischemia. Journal of Clinical Neuroscience, 2009, 16, 1466-1472.	1.5	24
138	Val ⁸ â€GLPâ€1 remodels synaptic activity and intracellular calcium homeostasis impaired by amyloid β peptide in rats. Journal of Neuroscience Research, 2013, 91, 568-577.	2.9	24
139	Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer's and Parkinson's disease. Cardiovascular Endocrinology, 2016, 5, 93-98.	0.8	24
140	A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology, 2020, 170, 108042.	4.1	24
141	Wide-ranging alterations in the brain fatty acid complement of subjects with late Alzheimer's disease as detected by GC-MS. American Journal of Translational Research (discontinued), 2016, 8, 154-65.	0.0	24
142	Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. International Journal of Molecular Medicine, 2017, 40, 1019-1028.	4.0	23
143	Levo-tetrahydropalmatine inhibits the acquisition of ketamine-induced conditioned place preference by regulating the expression of ERK and CREB phosphorylation in rats. Behavioural Brain Research, 2017, 317, 367-373.	2.2	23
144	New drug treatments show neuroprotective effects in Alzheimer′s and Parkinson′s diseases. Neural Regeneration Research, 2014, 9, 1870.	3.0	23

#	Article	IF	CITATIONS
145	Drugs developed for treatment of diabetes show protective effects in Alzheimer's and Parkinson's diseases. Acta Physiologica Sinica, 2014, 66, 497-510.	0.5	23
146	Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regeneration Research, 2021, 16, 1660.	3.0	22
147	Prostaglandins play a role in memory consolidation in the chick. European Journal of Pharmacology, 1995, 294, 253-259.	3.5	21
148	Different strains of rats show different sensitivity to block of long-term potentiation by nitric oxide synthase inhibitors. European Journal of Pharmacology, 2002, 457, 99-106.	3.5	21
149	A GLP-1/GIP Dual Receptor Agonist DA4-JC Effectively Attenuates Cognitive Impairment and Pathology in the APP/PS1/Tau Model of Alzheimer's Disease1. Journal of Alzheimer's Disease, 2021, 83, 799-818.	2.6	20
150	Prolonged Drug-Releasing Fibers Attenuate Alzheimer's Disease-like Pathogenesis. ACS Applied Materials & Interfaces, 2018, 10, 36693-36702.	8.0	18
151	Anaesthesia generates neuronal insulin resistance by inducing hypothermia. BMC Neuroscience, 2008, 9, 100.	1.9	17
152	Evidence That Parietal Lobe Fatty Acids May Be More Profoundly Affected in Moderate Alzheimer's Disease (AD) Pathology Than in Severe AD Pathology. Metabolites, 2018, 8, 69.	2.9	17
153	Nitric oxide is required for expression of LTP that is induced by stimulation phase-locked with theta rhythm. European Journal of Neuroscience, 1999, 11, 335-343.	2.6	16
154	Quantitative Measurement of [Na+] and [K+] in Postmortem Human Brain Tissue Indicates Disturbances in Subjects with Alzheimer's Disease and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2015, 44, 851-857.	2.6	16
155	Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2020, 525, 928-935.	2.1	16
156	Therapeutic potential of flavonoids in spinal cord injury. Reviews in the Neurosciences, 2017, 28, 87-101.	2.9	15
157	Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opinion on Therapeutic Targets, 2022, 26, 445-460.	3.4	15
158	Learned association of allocentric and egocentric information in the hippocampus. Experimental Brain Research, 2004, 158, 233-40.	1.5	13
159	A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 6827-6838.	4.0	13
160	The novel GLP-1/GIP dual receptor agonist DA3-CH is neuroprotective in the pilocarpine-induced epileptogenesis rat model. Epilepsy Research, 2019, 154, 97-106.	1.6	13
161	DAla2-GIP-GLU-PAL Protects Against Cognitive Deficits and Pathology in APP/PS1 Mice by Inhibiting Neuroinflammation and Upregulating cAMP/PKA/CREB Signaling Pathways. Journal of Alzheimer's Disease, 2021, 80, 695-713.	2.6	13
162	Neuroprotective role of (Val ⁸) GLP-1-Glu-PAL in an in vitro model of Parkinson′s disease. Neural Regeneration Research, 2016, 11, 326.	3.0	13

#	Article	IF	CITATIONS
163	b-amyloid induced reduction in synaptic transmission is reversed by inhibitors of nitric oxide synthase. NeuroReport, 1998, 9, 1245-1248.	1.2	12
164	Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Frontiers in Neurology, 2022, 13, 844697.	2.4	12
165	Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models. European Journal of Pharmacology, 2022, 926, 175029.	3.5	12
166	Block of HFS-induced LTP in the dentate gyrus by 1S,3S-ACPD. NeuroReport, 1997, 8, 451-454.	1.2	10
167	A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice. Hormones and Behavior, 2020, 118, 104640.	2.1	10
168	DA-JC1 improves learning and memory by antagonizing Aβ31–35-induced circadian rhythm disorder. Molecular Brain, 2019, 12, 14.	2.6	9
169	Dâ€Ser2â€oxyntomodulin ameliorated Aβ31â€35â€induced circadian rhythm disorder in mice. CNS Neuroscience and Therapeutics, 2020, 26, 343-354.	² 3.9	9
170	Neuroprotective Effects of a GLP-2 Analogue in the MPTP Parkinson's Disease Mouse Model. Journal of Parkinson's Disease, 2021, 11, 529-543.	2.8	9
171	The novel GLP-1/GIP dual agonist DA3-CH is more effective than liraglutide in reducing endoplasmic reticulum stress in diabetic rats with cerebral ischemia-reperfusion injury. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 333-343.	2.6	9
172	Evidence for pathophysiological commonalities between metabolic and neurodegenerative diseases. International Review of Neurobiology, 2020, 155, 65-89.	2.0	9
173	A GLP-2 Analogue Protects SH-SY5Y and Neuro-2a Cells Against Mitochondrial Damage, Autophagy Impairments and Apoptosis in a Parkinson Model. Drug Research, 2021, 71, 43-50.	1.7	8
174	Neuroprotective Effects of a Cholecystokinin Analogue in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Parkinson's Disease Mouse Model. Frontiers in Neuroscience, 2022, 16, 814430.	2.8	8
175	Metabotropic glutamate receptors control gating of spike transmission in the hippocampus area CA1. Pharmacology Biochemistry and Behavior, 2002, 73, 307-316.	2.9	6
176	Moving towards a more realistic concept of what constitutes Alzheimer's disease. EBioMedicine, 2019, 39, 17-18.	6.1	6
177	The role of the TNFα-mediated astrocyte signaling pathway in epilepsy. Acta Epileptologica, 2021, 3, .	0.9	6
178	The GLP-1 receptor agonist, liraglutide, fails to slow disease progression in SOD1G93A and TDP-43Q331K transgenic mouse models of ALS. Scientific Reports, 2021, 11, 17027.	3.3	5
179	Consciousness in mind: a correlate for ACh?. Trends in Neurosciences, 1999, 22, 541-542.	8.6	4
180	(D-Ser2) oxyntomodulin recovers hippocampal synaptic structure and theta rhythm in Alzheimer's disease transgenic mice. Neural Regeneration Research, 2022, 17, 2072.	3.0	4

#	Article	IF	CITATIONS
181	Are Alzheimer's disease and other neurodegenerative disorders caused by impaired signalling of insulin and other hormones?. Neuropharmacology, 2018, 136, 159.	4.1	3
182	Peptide drugs that have been developed to treat type 2 diabetes show neuroprotective effects. Regulatory Peptides, 2014, 192-193, 55-56.	1.9	2
183	Synaptic plasticity and learning and memory: LTP and beyond. Journal of Neuroscience Research, 1999, 58, 62-75.	2.9	2
184	Distributed population codes in sensory and memory representations of the neocortex. , 0, , 192-223.		1
185	[P3–063]: NOVEL BIODEVICE RELEASES DRUG IN VIVO FOR 14 DAYS AND AVOIDS DNA DAMAGE IN STRESSâ€INDUCED NEUROBLASTOMA CELLS: A PROMISE FOR ALZHEIMER'S DISEASE TREATMENT. Alzheimer's and Dementia, 2017, 13, P955.	0.8	1
186	P4â€053: DUAL INCRETIN AGONIST REDUCES NEUROINFLAMMATION IN A TRANSGENIC MOUSE MODEL OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1453.	0.8	1
187	How could populations of neurons encode information?. , 0, , 3-18.		0
188	Theta rhythm and bidirectional plasticity in the hippocampus. , 0, , 174-191.		0
189	Functional roles of theta and gamma oscillations in the association and dissociation of neuronal networks in primates and rodents. , 0, , 151-173.		0
190	Summary of chapters, conclusion, and future targets. , 0, , 433-469.		0
191	Seems familiar. New Scientist, 2009, 202, 25.	0.0	0
192	Protective Roles of the Incretin Hormones Glucagon-Like Peptide-1 and Glucose-Dependent Insolinotropic Polypeptide Hormones in Neurodegeneration. , 0, , .		0
193	Editorial. , 2014, 10, S1-S2.		0
194	P4-317: Liraglutide protects the brains of macaques against synapse loss caused by abeta oligomers. , 2015, 11, P905-P906.		0
195	P3â€076: QUANTITATIVE METABOLOMICS PROFILING OF BRAIN TISSUE FROM PEOPLE WHO SUFFERED FROM MILD AND SEVERE AD REVEALS DISTINCT BIOCHEMICAL DIFFERENCES WHEN COMPARED TO TISSUE HARVESTED FROM NONâ€COGNITIVELY IMPAIRED PEOPLE. Alzheimer's and Dementia, 2018, 14, P1093.	0.8	0
196	P3â€067: POLY(LACTIC ACID) (PLA) ELECTROSPUN FIBERS IMPROVE NEUROGENESIS AND REDUCE βâ€AMYLOII PLAQUES IN A TRANSGENIC MOUSE MODEL OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1090.) 0.8	0
197	The dual GLPâ€1/GIP receptor agonist DA4â€JC shows superior protective properties in the APP/PS1 mouse model of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e039220.	0.8	0
198	Introduction: Long-Term Potentiation as a Model for Memory Mechanisms: The Story So Far. , 2000, ,		0

198 1-34.

#	Article	IF	CITATIONS
199	Conclusions and Future Targets. , 2000, , 476-490.		0
200	Theta-Facilitated Induction of Long-Term Potentiation: A Better Model for Memory Formation?. , 2000, , 146-166.		0
201	033†GLP-1RAs reduce stroke incidence in patients with type 2 diabetes mellitus: a meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A111.1-A111.	1.9	Ο