Deborah S Wuttke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299698/publications.pdf Version: 2024-02-01

DEROPAH S WUTTE

#	Article	IF	CITATIONS
1	The DNA-Binding High-Mobility Group Box Domain of Sox Family Proteins Directly Interacts with RNA <i>In Vitro</i> . Biochemistry, 2022, 61, 943-951.	2.5	9
2	Cyp33 binds AU-rich RNA motifs via an extended interface that competitively disrupts the gene repressive Cyp33-MLL1 interaction in vitro. PLoS ONE, 2021, 16, e0237956.	2.5	2
3	CST does not evict elongating telomerase but prevents initiation by ssDNA binding. Nucleic Acids Research, 2021, 49, 11653-11665.	14.5	21
4	hnRNPK recognition of the B motif of Xist and other biological RNAs. Nucleic Acids Research, 2020, 48, 9320-9335.	14.5	25
5	The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science, 2020, 368, 1081-1085.	12.6	76
6	The Sox2 transcription factor binds RNA. Nature Communications, 2020, 11, 1805.	12.8	77
7	Spen links RNA-mediated endogenous retrovirus silencing and X chromosome inactivation. ELife, 2020, 9, .	6.0	33
8	The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity. Nucleic Acids Research, 2019, 47, 8180-8192.	14.5	24
9	Nonspecific Binding of RNA to PARP1 and PARP2 Does Not Lead to Catalytic Activation. Biochemistry, 2019, 58, 5107-5111.	2.5	18
10	Measuring Low-Picomolar Apparent Binding Affinities by Minigel Electrophoretic Mobility Shift. Methods in Molecular Biology, 2019, 1855, 341-354.	0.9	1
11	Discrimination against RNA Backbones by a ssDNA Binding Protein. Structure, 2018, 26, 722-733.e2.	3.3	1
12	Diversity in peptide recognition by the SH2 domain of SH2B1. Proteins: Structure, Function and Bioinformatics, 2018, 86, 164-176.	2.6	5
13	Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10315-10320.	7.1	7
14	Calorimetric Measurement of SH2 Domain Ligand Affinities. Methods in Molecular Biology, 2017, 1555, 291-305.	0.9	3
15	NMR Chemical Shift Mapping of SH2 Peptide Interactions. Methods in Molecular Biology, 2017, 1555, 269-290.	0.9	3
16	Multimodal Recognition of Diverse Peptides by the C-Terminal SH2 Domain of Phospholipase C-γ1 Protein. Biochemistry, 2017, 56, 2225-2237.	2.5	5
17	Human CST Prefers G-Rich but Not Necessarily Telomeric Sequences. Biochemistry, 2017, 56, 4210-4218.	2.5	44
18	Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry, 2016. 55. 5326-5340.	2.5	21

DEBORAH S WUTTKE

#	Article	IF	CITATIONS
19	Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis. Cell Reports, 2016, 15, 2170-2184.	6.4	94
20	Tying up the Ends: Recognition of ssDNA at Telomeres. FASEB Journal, 2015, 29, 371.2.	0.5	0
21	The telomeric protein Pot1 from Schizosaccharomyces pombe binds ssDNA in two modes with differing 3′ end availability. Nucleic Acids Research, 2014, 42, 9656-9665.	14.5	10
22	The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain. Nucleic Acids Research, 2014, 42, 475-484.	14.5	25
23	Structure of Est3 reveals a bimodal surface with differential roles in telomere replication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 214-218.	7.1	36
24	Less Is More: Structures of Difficult Targets with Minimal Constraints. Structure, 2014, 22, 1223-1224.	3.3	3
25	Nonspecific Recognition Is Achieved in Pot1pC through the Use of Multiple Binding Modes. Structure, 2013, 21, 121-132.	3.3	29
26	Single-Stranded DNA-Binding Proteins: Multiple Domains for Multiple Functions. Structure, 2013, 21, 1074-1084.	3.3	100
27	Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions. Journal of Nucleic Acids Investigation, 2013, 4, 3.	0.8	11
28	Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions. Journal of Nucleic Acids Investigation, 2013, 4, 3.	0.8	12
29	A Small Molecule Inhibitor of Pot1 Binding to Telomeric DNA. Biochemistry, 2012, 51, 7833-7845.	2.5	10
30	Telomerase and Telomere-Associated Proteins: Structural Insights into Mechanism and Evolution. Structure, 2012, 20, 28-39.	3.3	91
31	<i>Schizosaccharomyces pombe</i> Protection of Telomeres 1 Utilizes Alternate Binding Modes To Accommodate Different Telomeric Sequences. Biochemistry, 2011, 50, 7503-7513.	2.5	20
32	Sequence-Specific Binding to Telomeric DNA Is Not a Conserved Property of the Cdc13 DNA Binding Domain. Biochemistry, 2011, 50, 6289-6291.	2.5	15
33	Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19298-19303.	7.1	62
34	Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Research, 2009, 37, 354-367.	14.5	26
35	Nonadditivity in the Recognition of Single-Stranded DNA by the <i>Schizosaccharomyces pombe</i> Protection of Telomeres 1 DNA-Binding Domain, Pot1-DBD. Biochemistry, 2009, 48, 6864-6875.	2.5	17
36	Insights into the Dynamics of Specific Telomeric Single-Stranded DNA Recognition by Pot1pN. Journal of Molecular Biology, 2009, 387, 935-948.	4.2	8

DEBORAH S WUTTKE

#	Article	IF	CITATIONS
37	Reconstitution of a native-like SH2 domain from disordered peptide fragments examined by multidimensional heteronuclear NMR. Protein Science, 2008, 10, 2162-2175.	7.6	5
38	Deciphering the Mechanism of Thermodynamic Accommodation of Telomeric Oligonucleotide Sequences by the Schizosaccharomyces pombe Protection of Telomeres 1 (Pot1pN) Protein. Biochemistry, 2008, 47, 4345-4358.	2.5	10
39	Probing the mechanism of recognition of ssDNA by the Cdc13-DBD. Nucleic Acids Research, 2008, 36, 1624-1633.	14.5	18
40	Characterization of Protein-Protein Interactions Critical for Poliovirus Replication: Analysis of 3AB and VPg Binding to the RNA-Dependent RNA Polymerase. Journal of Virology, 2007, 81, 6369-6378.	3.4	17
41	Identification of the Determinants for the Specific Recognition of Single-Strand Telomeric DNA by Cdc13â€. Biochemistry, 2006, 45, 871-879.	2.5	34
42	A New Model for Schizosaccharomyces pombe Telomere Recognition: The Telomeric Single-stranded DNA-Binding Activity of Pot11-389. Journal of Molecular Biology, 2006, 361, 80-93.	4.2	33
43	Themes in ssDNA recognition by telomere-end protection proteins. Trends in Biochemical Sciences, 2006, 31, 516-525.	7.5	38
44	Divergent Evolution Within Protein Superfolds Inferred from Profile-based Phylogenetics. Journal of Molecular Biology, 2005, 354, 722-737.	4.2	40
45	Prediction of Multiple Tandem OB-Fold Domains in Telomere End-Binding Proteins Pot1 and Cdc13. Structure, 2004, 12, 1877-1879.	3.3	52
46	Structural Basis for Telomeric Single-stranded DNA Recognition by Yeast Cdc13. Journal of Molecular Biology, 2004, 338, 241-255.	4.2	91
47	Homology Among Telomeric End-Protection Proteins. Structure, 2003, 11, 1049-1050.	3.3	33
48	Electrostatic interactions in the reconstitution of an SH2 domain from constituent peptide fragments. Protein Science, 2003, 12, 44-55.	7.6	7
49	Site-Directed Mutagenesis Reveals the Thermodynamic Requirements for Single-Stranded DNA Recognition by the Telomere-Binding Protein Cdc13. Biochemistry, 2003, 42, 3751-3758.	2.5	49
50	Towards an Understanding of the Poliovirus Replication Complex: The Solution Structure of the Soluble Domain of the Poliovirus 3A Protein. Journal of Molecular Biology, 2003, 330, 225-234.	4.2	57
51	Nucleic Acid Recognition by OB-Fold Proteins. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 115-133.	18.3	448
52	Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Research, 2002, 30, 4305-4313.	14.5	49
53	Conserved Structure for Single-Stranded Telomeric DNA Recognition. Science, 2002, 296, 145-147.	12.6	168
54	1H, 13C and 15N resonance assignments of the DNA-binding domain of the essential protein Cdc13 complexed with single-stranded telomeric DNA. Journal of Biomolecular NMR, 2002, 22, 379-380.	2.8	3

#	Article	IF	CITATIONS
55	Induced alignment and measurement of dipolar couplings of an SH2 domain through direct binding with filamentous phage. Journal of Biomolecular NMR, 1999, 14, 175-179.	2.8	18