List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299300/publications.pdf Version: 2024-02-01

λλεννι λλει

#	Article	IF	CITATIONS
1	Targeting the acetylation signaling pathway in cancer therapy. Seminars in Cancer Biology, 2022, 85, 209-218.	9.6	29
2	Post-translational regulations of PD-L1 and PD-1: Mechanisms and opportunities for combined immunotherapy. Seminars in Cancer Biology, 2022, 85, 246-252.	9.6	38
3	Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends in Cell Biology, 2022, 32, 30-44.	7.9	130
4	Functional analysis of the emerging roles for the KISS1/KISS1R signaling pathway in cancer metastasis. Journal of Genetics and Genomics, 2022, 49, 181-184.	3.9	5
5	A Six-microRNA Signature Nomogram for Preoperative Prediction of Tumor Deposits in Colorectal Cancer. International Journal of General Medicine, 2022, Volume 15, 675-687.	1.8	6
6	IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death and Differentiation, 2022, 29, 1528-1540.	11.2	10
7	Regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer's disease. , 2022, 1, 42-55.		11
8	DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Science Signaling, 2022, 15, eabh2290.	3.6	16
9	PROTAC technology for the treatment of Alzheimer's disease: advances and perspectives. , 2022, 1, 24-41.		19
10	Epidemiology of Acute Heart Failure in Critically III Patients With COVID-19: An Analysis From the Critical Care Cardiology Trials Network. Journal of Cardiac Failure, 2022, 28, 675-681.	1.7	8
11	Acetylation-dependent regulation of BRAF oncogenic function. Cell Reports, 2022, 38, 110250.	6.4	13
12	Mutation of MUC16 Is Associated With Tumor Mutational Burden and Lymph Node Metastasis in Patients With Gastric Cancer. Frontiers in Medicine, 2022, 9, 836892.	2.6	4
13	S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nature Communications, 2022, 13, 1548.	12.8	19
14	Clinicopathologic characteristics and prognosis of synchronous colorectal cancer: a retrospective study. BMC Gastroenterology, 2022, 22, 120.	2.0	3
15	USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nature Communications, 2022, 13, 1700.	12.8	45
16	Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death and Differentiation, 2022, 29, 1730-1743.	11.2	18
17	No association between APOE genotype and lipid lowering with cognitive function in a randomized controlled trial of evolocumab. PLoS ONE, 2022, 17, e0266615.	2.5	5
18	EXOC4 Promotes Diffuse-Type Gastric Cancer Metastasis via Activating FAK Signal. Molecular Cancer Research, 2022, 20, 1021-1034.	3.4	4

#	Article	IF	CITATIONS
19	PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. , 2022, 1, .		13
20	Emerging Roles of the Copper–CTR1 Axis in Tumorigenesis. Molecular Cancer Research, 2022, 20, 1339-1353.	3.4	8
21	TF-DUBTACs Stabilize Tumor Suppressor Transcription Factors. Journal of the American Chemical Society, 2022, 144, 12934-12941.	13.7	20
22	Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology, 2022, 86, 269-279.	9.6	7
23	Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Research, 2021, 31, 80-93.	12.0	51
24	Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death and Differentiation, 2021, 28, 427-438.	11.2	145
25	Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation asÂthe receptor protein of CRL2Prame complex. Cell Death and Differentiation, 2021, 28, 1926-1940.	11.2	15
26	Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death and Disease, 2021, 12, 310.	6.3	33
27	Cancer Selective Target Degradation by Folate-Caged PROTACs. Journal of the American Chemical Society, 2021, 143, 7380-7387.	13.7	117
28	Connecting COPD GWAS Genes: FAM13A Controls TGFβ2 Secretion by Modulating AP-3 Transport. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 532-543.	2.9	4
29	TF-PROTACs Enable Targeted Degradation of Transcription Factors. Journal of the American Chemical Society, 2021, 143, 8902-8910.	13.7	116
30	Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Molecular Cell, 2021, 81, 2317-2331.e6.	9.7	97
31	Membrane-Associated RING-CH 8 Functions as a Novel PD-L1 E3 Ligase to Mediate PD-L1 Degradation Induced by EGFR Inhibitors. Molecular Cancer Research, 2021, 19, 1622-1634.	3.4	19
32	Copper Promotes Tumorigenesis by Activating the PDK1â€AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Advanced Science, 2021, 8, e2004303.	11.2	66
33	PCAF and SIRT1 modulate βTrCP1 protein stability in an acetylation-dependent manner. Journal of Genetics and Genomics, 2021, 48, 652-655.	3.9	1
34	Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Frontiers in Cell and Developmental Biology, 2021, 9, 678077.	3.7	18
35	Positive feedback regulation of lncRNA PVT1 and HIF21± contributes to clear cell renal cell carcinoma tumorigenesis and metastasis. Oncogene, 2021, 40, 5639-5650.	5.9	27
36	SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Molecular Cancer, 2021, 20, 100.	19.2	36

#	Article	IF	CITATIONS
37	Folate-Guided Protein Degradation by Immunomodulatory Imide Drug-Based Molecular Glues and Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 12273-12285.	6.4	37
38	OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Molecular Cell, 2021, 81, 3187-3204.e7.	9.7	14
39	Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer. Nature Communications, 2021, 12, 5386.	12.8	22
40	Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends in Cancer, 2021, 7, 837-846.	7.4	45
41	G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer. British Journal of Cancer, 2021, 124, 425-436.	6.4	28
42	Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nature Communications, 2021, 12, 6704.	12.8	14
43	Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Reports, 2021, 37, 109988.	6.4	20
44	WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities in breast cancer models. Journal of Clinical Investigation, 2021, 131, .	8.2	7
45	Phosphorylationâ€dependent osterix degradation negatively regulates osteoblast differentiation. FASEB Journal, 2020, 34, 14930-14945.	0.5	9
46	The Negative Cross-Talk between SAG/RBX2/ROC2 and APC/C E3 Ligases in Regulation of Cell Cycle Progression and Drug Resistance. Cell Reports, 2020, 32, 108102.	6.4	10
47	WWP1 germline variants are associated with normocephalic autism spectrum disorder. Cell Death and Disease, 2020, 11, 529.	6.3	5
48	The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduction and Targeted Therapy, 2020, 5, 150.	17.1	66
49	Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nature Cell Biology, 2020, 22, 1064-1075.	10.3	182
50	Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Molecular Cancer, 2020, 19, 130.	19.2	140
51	Association of APOE genotype and lipid lowering with cognitive function in a randomized placeboâ€controlled trial of Evolocumab. Alzheimer's and Dementia, 2020, 16, e047188.	0.8	0
52	Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188365.	7.4	5
53	Cognition After Lowering LDL-Cholesterol With Evolocumab. Journal of the American College of Cardiology, 2020, 75, 2283-2293.	2.8	62
54	WWP1 Gain-of-Function Inactivation of PTEN in Cancer Predisposition. New England Journal of Medicine, 2020, 382, 2103-2116.	27.0	49

#	Article	IF	CITATIONS
55	Use of Temporary Mechanical Circulatory Support for Management of Cardiogenic Shock Before and After the United Network for Organ Sharing Donor Heart Allocation System Changes. JAMA Cardiology, 2020, 5, 703.	6.1	93
56	FAM13A Represses AMPK Activity and Regulates Hepatic Glucose and Lipid Metabolism. IScience, 2020, 23, 100928.	4.1	16
57	The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduction and Targeted Therapy, 2020, 5, 11.	17.1	338
58	Light-induced control of protein destruction by opto-PROTAC. Science Advances, 2020, 6, eaay5154.	10.3	139
59	PROTACs: A novel strategy for cancer therapy. Seminars in Cancer Biology, 2020, 67, 171-179.	9.6	95
60	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	10.3	56
61	The diverse roles of SPOP in prostate cancer and kidney cancer. Nature Reviews Urology, 2020, 17, 339-350.	3.8	62
62	DUB-independent regulation of pVHL by OTUD6B suppresses hepatocellular carcinoma. Protein and Cell, 2020, 11, 546-548.	11.0	4
63	The CRL3BTBD9 E3 ubiquitin ligase complex targets TNFAIP1 for degradation to suppress cancer cell migration. Signal Transduction and Targeted Therapy, 2020, 5, 42.	17.1	16
64	Targeting SCF E3 Ligases for Cancer Therapies. Advances in Experimental Medicine and Biology, 2020, 1217, 123-146.	1.6	34
65	RBR E3 ubiquitin ligases in tumorigenesis. Seminars in Cancer Biology, 2020, 67, 131-144.	9.6	53
66	GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight, 2020, 5, .	5.0	51
67	SCFFBXW7/CSK3Î ² -Mediated GFI1 Degradation Suppresses Proliferation of Gastric Cancer Cells. Cancer Research, 2019, 79, 4387-4398.	0.9	18
68	Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLoS Genetics, 2019, 15, e1008229.	3.5	17
69	Oxygen sensing and adaptability won the 2019 Nobel Prize in Physiology or medicine. Genes and Diseases, 2019, 6, 328-332.	3.4	44
70	Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188312.	7.4	48
71	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	10.3	109
72	PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discovery, 2019, 9, 1306-1323.	9.4	54

#	Article	IF	CITATIONS
73	Fine-tuning AKT kinase activity through direct lysine methylation. Cell Cycle, 2019, 18, 917-922.	2.6	19
74	Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitiory pathway. Science, 2019, 364, .	12.6	194
75	Hippo signaling is intrinsically regulated during cell cycle progression by APC/C ^{Cdh1} . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9423-9432.	7.1	48
76	Degrading proteins in animals: "PROTACâ€ŧion goes in vivo. Cell Research, 2019, 29, 179-180.	12.0	28
77	The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 138-159.	7.4	46
78	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	7.0	53
79	SCF βâ€Tr CP ubiquitinates CHK 1 in an AMPK â€dependent manner in response to glucose deprivation. Molecular Oncology, 2019, 13, 307-321.	4.6	18
80	Physiological functions of FBW7 in cancer and metabolism. Cellular Signalling, 2018, 46, 15-22.	3.6	45
81	SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation. Protein and Cell, 2018, 9, 879-889.	11.0	16
82	Association of Fibroblast Growth Factor 23 With Recurrent Cardiovascular Events in Patients After an Acute Coronary Syndrome. JAMA Cardiology, 2018, 3, 473.	6.1	33
83	Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Molecular Cell, 2018, 69, 279-291.e5.	9.7	138
84	The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nature Cell Biology, 2018, 20, 320-331.	10.3	86
85	The protective role of DOT1L in UV-induced melanomagenesis. Nature Communications, 2018, 9, 259.	12.8	63
86	Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	12.8	39
87	Analysis of PD1, PDL1, PDL2 expression and T cells infiltration in 1014 gastric cancer patients. Oncolmmunology, 2018, 7, e1356144.	4.6	113
88	Validation of the Seattle angina questionnaire in women with ischemic heart disease. American Heart Journal, 2018, 201, 117-123.	2.7	25
89	The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. Science Signaling, 2018, 11, .	3.6	10
90	Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. Science Signaling, 2018, 11, .	3.6	41

#	Article	IF	CITATIONS
91	Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 2018, 553, 91-95.	27.8	660
92	Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 11-28.	7.4	48
93	Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nature Communications, 2018, 9, 4648.	12.8	47
94	Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nature Communications, 2018, 9, 5426.	12.8	11
95	Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy. Trends in Biochemical Sciences, 2018, 43, 1014-1032.	7.5	151
96	Modes and timing of death in 66 252 patients with non-ST-segment elevation acute coronary syndromes enrolled in 14 TIMI trials. European Heart Journal, 2018, 39, 3810-3820.	2.2	28
97	SCFFBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nature Communications, 2018, 9, 3569.	12.8	49
98	Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nature Communications, 2018, 9, 2464.	12.8	77
99	UBE2M Is a Stress-Inducible Dual E2 for Neddylation and Ubiquitylation that Promotes Targeted Degradation of UBE2F. Molecular Cell, 2018, 70, 1008-1024.e6.	9.7	59
100	The emerging roles of protein homeostasisâ€governing pathways in Alzheimer's disease. Aging Cell, 2018, 17, e12801.	6.7	88
101	K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Science Signaling, 2018, 11,	3.6	56
102	Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Letters, 2017, 390, 11-20.	7.2	37
103	Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Research, 2017, 77, 2488-2499.	0.9	178
104	The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function. Cancer Discovery, 2017, 7, 424-441.	9.4	57
105	G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nature Cell Biology, 2017, 19, 177-188.	10.3	107
106	Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Science Signaling, 2017, 10, .	3.6	52
107	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	27.8	136
108	" <i>FEM1</i> â€nism controls SLBP stability during cell cycle. Cell Cycle, 2017, 16, 597-598.	2.6	3

#	Article	IF	CITATIONS
109	A covalently bound inhibitor triggers <scp>EZH</scp> 2 degradation through <scp>CHIP</scp> â€mediated ubiquitination. EMBO Journal, 2017, 36, 1243-1260.	7.8	67
110	The SCF ^{β-TRCP} E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Science Signaling, 2017, 10, .	3.6	44
111	E3 ubiquitin ligases in cancer and implications for therapies. Cancer and Metastasis Reviews, 2017, 36, 683-702.	5.9	103
112	Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.	30.7	240
113	NOTCH2 Hajdu-Cheney Mutations Escape SCFFBW7-Dependent Proteolysis to Promote Osteoporosis. Molecular Cell, 2017, 68, 645-658.e5.	9.7	29
114	SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle, 2017, 16, 2326-2329.	2.6	15
115	Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 341-358.	7.4	42
116	Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Letters, 2017, 385, 207-214.	7.2	43
117	Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Clinical Cancer Research, 2017, 23, 1104-1116.	7.0	88
118	Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget, 2017, 8, 47890-47901.	1.8	30
119	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	9.7	87
120	Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 12-22.	7.4	65
121	Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid. Cell Research, 2016, 26, 699-712.	12.0	25
122	Identification of TRA2B-DNAH5 fusion as a novel oncogenic driver in human lung squamous cell carcinoma. Cell Research, 2016, 26, 1149-1164.	12.0	26
123	Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 232-251.	7.4	31
124	A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle. Cell Cycle, 2016, 15, 3042-3047.	2.6	6
125	pVHL suppresses kinase activity of Akt in a proline-hydroxylation–dependent manner. Science, 2016, 353, 929-932.	12.6	165
126	Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discovery, 2016, 2, 15044.	6.7	33

#	Article	IF	CITATIONS
127	USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduction and Targeted Therapy, 2016, 1, 16024.	17.1	35
128	Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. International Journal of Biochemistry and Cell Biology, 2016, 73, 99-110.	2.8	75
129	Emerging roles of FGF signaling in hepatocellular carcinoma. Translational Cancer Research, 2016, 5, 1-6.	1.0	21
130	SCFβ-TRCP promotes cell growth by targeting PR-Set7/Set8 for degradation. Nature Communications, 2015, 6, 10185.	12.8	37
131	Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair. Molecular Cell, 2015, 57, 648-661.	9.7	59
132	Targeting Cdc20 as a novel cancer therapeutic strategy. , 2015, 151, 141-151.		194
133	The E3 ligase APC/C ^{Cdh1} promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth. Science Signaling, 2015, 8, ra87.	3.6	21
134	Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nature Cell Biology, 2015, 17, 1169-1181.	10.3	135
135	PtdIns(3,4,5) <i>P</i> 3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery, 2015, 5, 1194-1209.	9.4	297
136	SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Molecular Cell, 2015, 59, 917-930.	9.7	172
137	Targeting the ubiquitin pathway for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 50-60.	7.4	99
138	K-ras-driven engineered mouse models for pancreatic cancer. Discovery Medicine, 2015, 19, 15-21.	0.5	4
139	SCFÎ ² -TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination. Oncotarget, 2014, 5, 4211-4221.	1.8	21
140	Phosphorylation of Akt at the C-terminal tail triggers Akt Activation. Cell Cycle, 2014, 13, 2162-2164.	2.6	36
141	Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 277-293.	7.4	64
142	Roles of F-box proteins in cancer. Nature Reviews Cancer, 2014, 14, 233-247.	28.4	407
143	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	27.8	285
144	Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function. Cell, 2014, 157, 595-610.	28.9	235

#	Article	IF	CITATIONS
145	SGK3 Mediates INPP4B-Dependent PI3K Signaling in Breast Cancer. Molecular Cell, 2014, 56, 595-607.	9.7	133
146	mTOR signaling in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 638-654.	7.4	113
147	Cyclin C is a haploinsufficient tumour suppressor. Nature Cell Biology, 2014, 16, 1080-1091.	10.3	124
148	APCCdc20 Suppresses Apoptosis through Targeting Bim for Ubiquitination and Destruction. Developmental Cell, 2014, 29, 377-391.	7.0	110
149	NEDD4: A Promising Target for Cancer Therapy. Current Cancer Drug Targets, 2014, 14, 549-556.	1.6	62
150	MC1R Is a Potent Regulator of PTEN after UV Exposure in Melanocytes. Molecular Cell, 2013, 51, 409-422.	9.7	122
151	Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nature Cell Biology, 2013, 15, 1340-1350.	10.3	216
152	SCF-Mediated Cdh1 Degradation Defines a Negative Feedback System that Coordinates Cell-Cycle Progression. Cell Reports, 2013, 4, 803-816.	6.4	65
153	DNA Damage Regulates UHRF1 Stability via the SCF ^{β-TrCP} E3 Ligase. Molecular and Cellular Biology, 2013, 33, 1139-1148.	2.3	44
154	Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Research, 2013, 23, 599-619.	12.0	71
155	Cdc20: A Potential Novel Therapeutic Target for Cancer Treatment. Current Pharmaceutical Design, 2013, 19, 3210-3214.	1.9	95
156	SCFÎ ² -TRCP targets MTSS1 for ubiquitination-mediated destruction to regulate cancer cell proliferation and migration. Oncotarget, 2013, 4, 2339-2353.	1.8	44
157	The key role of ubiquitination and sumoylation in signaling and cancer: a research topic. Frontiers in Oncology, 2012, 2, 187.	2.8	10
158	Skp2 is a Promising Therapeutic Target in Breast Cancer. Frontiers in Oncology, 2012, 1, .	2.8	65
159	SCFÎ ² -TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. Journal of Experimental Medicine, 2012, 209, 1289-1307.	8.5	85
160	The Skp2-SCF E3 Ligase Regulates Akt Ubiquitination, Glycolysis, Herceptin Sensitivity, and Tumorigenesis. Cell, 2012, 149, 1098-1111.	28.9	332
161	Acetylation-Dependent Regulation of Skp2 Function. Cell, 2012, 150, 179-193.	28.9	180
162	SCFFbw7 Modulates the NFκB Signaling Pathway by Targeting NFκB2 for Ubiquitination and Destruction. Cell Reports, 2012, 1, 434-443.	6.4	85

#	Article	IF	CITATIONS
163	The Fbw7 and BetaTRCP E3 ubiquitin ligases and their roles in tumorigenesis. Frontiers in Bioscience - Landmark, 2012, 17, 2197.	3.0	91
164	mTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR. Molecular Cell, 2011, 44, 290-303.	9.7	212
165	Cdh1 Regulates Osteoblast Function through an APC/C-Independent Modulation of Smurf1. Molecular Cell, 2011, 44, 721-733.	9.7	91
166	SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature, 2011, 471, 104-109.	27.8	558
167	Good COP1 or bad COP1? In vivo veritas. Journal of Clinical Investigation, 2011, 121, 1263-1265.	8.2	28
168	Phosphorylation by Casein Kinase I Promotes the Turnover of the Mdm2 Oncoprotein via the SCFβ-TRCP Ubiquitin Ligase. Cancer Cell, 2010, 18, 147-159.	16.8	182
169	Cdh1 Regulates Cell Cycle through Modulating the Claspin/Chk1 and the Rb/E2F1 Pathways. Molecular Biology of the Cell, 2009, 20, 3305-3316.	2.1	64
170	Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nature Cell Biology, 2009, 11, 397-408.	10.3	218
171	The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell, 2005, 8, 25-33.	16.8	370
172	Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature, 2004, 428, 194-198.	27.8	434