Sagar Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6299298/publications.pdf Version: 2024-02-01

		394421	434195
34	1,912	19	31
papers	citations	h-index	g-index
35	35	35	3389
all docs	docs citations	times ranked	citing authors

SACAD JAIN

#	Article	IF	CITATIONS
1	Tunable electronic properties and large optical anisotropy in the CsPbXnY3-n (X, YÂ=ÂCl, Br, I) perovskite. Solar Energy, 2021, 217, 165-172.	6.1	2
2	Improved open-circuit voltage via Cs2CO3-Doped TiO2 for high-performance and stable perovskite solar cells. Organic Electronics, 2020, 77, 105495.	2.6	9
3	CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Solar Energy, 2020, 195, 436-445.	6.1	42
4	Development of Dopantâ€Free Organic Hole Transporting Materials for Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903326.	19.5	202
5	Allâ€Rounder Lowâ€Cost Dopantâ€Free Dâ€Aâ€D Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	5.1	72
6	Jet nebulizer-spray coated CZTS film as Pt-free electrocatalyst in photoelectrocatalytic fuel cells. Applied Surface Science, 2019, 463, 994-1000.	6.1	10
7	Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Communications Chemistry, 2019, 2, .	4.5	119
8	lon-migration and carrier-recombination inhibition by the cation-Ï€ interaction in planar perovskite solar cells. Organic Electronics, 2019, 75, 105387.	2.6	17
9	Improving the Performance of Planar Perovskite Solar Cells through a Preheated, Delayed Annealing Process To Control Nucleation and Phase Transition of Perovskite Films. Crystal Growth and Design, 2019, 19, 4314-4323.	3.0	7
10	High-quality perovskite films <i>via</i> post-annealing microwave treatment. New Journal of Chemistry, 2019, 43, 9338-9344.	2.8	10
11	Detrimental effect of silver doping in spiro-MeOTAD on the device performance of perovskite solar cells. Organic Electronics, 2019, 69, 343-347.	2.6	12
12	Outstanding Indoor Performance of Perovskite Photovoltaic Cells – Effect of Device Architectures and Interlayers. Solar Rrl, 2019, 3, 1800207.	5.8	63
13	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	10.3	70
14	The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. Journal of Materials Chemistry A, 2018, 6, 9498-9505.	10.3	19
15	Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	19.5	154
16	Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes. Sustainable Energy and Fuels, 2018, 2, 905-914.	4.9	32
17	Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics. Journal of Materials Chemistry A, 2018, 6, 5618-5626.	10.3	189
18	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	21.0	106

SAGAR JAIN

#	Article	IF	CITATIONS
19	Solvent engineering approach via introducing poly (3, 4-ethylene dioxy-thiophene)–poly (styrene) Tj ETQq1 1 efficient inverted planar perovskite solar cells. Solar Energy, 2018, 176, 1-9.	0.784314 i 6.1	rgBT /Overlo 12
20	Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. Journal of Power Sources, 2018, 401, 303-311.	7.8	19
21	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801509.	19.5	184
22	An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 2018, 49, 614-624.	16.0	169
23	Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation. Science and Technology of Advanced Materials, 2018, 19, 194-202.	6.1	12
24	Structural, electronic and catalytic performances of single-atom Fe stabilized by divacancy-nitrogen-doped graphene. RSC Advances, 2017, 7, 7920-7928.	3.6	36
25	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	3.6	23
26	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	3.6	30
27	Efficient and stable perovskite solar cells based on high-quality CH ₃ NH ₃ PbI _{3â^'x} Cl _x films modified by V ₂ O _x additives. Journal of Materials Chemistry A, 2017, 5, 24282-24291.	10.3	27
28	Resonance Raman and Excitation Energy Dependent Charge Transfer Mechanism in Halide-Substituted Hybrid Perovskite Solar Cells. ACS Nano, 2015, 9, 2088-2101.	14.6	141
29	Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21760-21771.	10.3	96
30	Development of a multifunctional TiO ₂ /MWCNT hybrid composite grafted on a stainless steel grating. RSC Advances, 2015, 5, 103255-103264.	3.6	24
31	Origin of dark electrical bias-induced degradation of inverted methylammonium lead iodide perovskite solar cells. , 0, , .		0
32	Vapour Assisted Morphological Tailoring of Lead-Free Bismuth Based Perovskite Solar Cells for Improved Performance and Stability. , 0, , .		0
33	Nontoxic (CH3NH3)3Bi2I9 Bismuth based perovskite solar cells : Improved device performance and stability through morphological tailoring. , 0, , .		0
34	Effect of Interface Engineering and Origin of High Current in Planar Inverted Perovskite Solar cells. , 0, , .		0