
Susan R. Weiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6298104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiology and Molecular Biology Reviews, 2005, 69, 635-664.	2.9	951
2	Coronavirus Pathogenesis. Advances in Virus Research, 2011, 81, 85-164.	0.9	655
3	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	13.5	330
4	Systematic Assembly of a Full-Length Infectious cDNA of Mouse Hepatitis Virus Strain A59. Journal of Virology, 2002, 76, 11065-11078.	1.5	281
5	Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host and Microbe, 2012, 11, 607-616.	5.1	242
6	Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2241-2246.	3.3	221
7	The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Research, 1990, 18, 1825-1832.	6.5	216
8	Murine Coronavirus Mouse Hepatitis Virus Is Recognized by MDA5 and Induces Type I Interferon in Brain Macrophages/Microglia. Journal of Virology, 2008, 82, 9829-9838.	1.5	202
9	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	2.1	184
10	Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science, 1986, 232, 991-993.	6.0	173
11	Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus Entry That Act by Three Distinct Mechanisms. Journal of Virology, 2013, 87, 8017-8028.	1.5	159
12	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	159
13	MurineHepatitis Virus Strain 1 Produces a Clinically Relevant Model of Severe Acute Respiratory Syndrome in A/J Mice. Journal of Virology, 2006, 80, 10382-10394.	1.5	152
14	Pathogenesis of Chimeric MHV4/MHV-A59 Recombinant Viruses: the Murine Coronavirus Spike Protein Is a Major Determinant of Neurovirulence. Journal of Virology, 1999, 73, 7752-7760.	1.5	149
15	Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry. Journal of Virology, 2006, 80, 5768-5776.	1.5	142
16	Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. Journal of Virology, 1993, 67, 4504-4512.	1.5	133
17	Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio, 2016, 7, e00258.	1.8	125
18	Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. FLife. 2017. 6	2.8	121

#	Article	IF	CITATIONS
19	Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13114-13119.	3.3	118
20	Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3' end of the viral mRNA leader sequence. Journal of Virology, 1985, 53, 834-840.	1.5	116
21	Forty years with coronaviruses. Journal of Experimental Medicine, 2020, 217, .	4.2	112
22	Cell-free translation of murine coronavirus RNA. Journal of Virology, 1982, 43, 905-913.	1.5	108
23	Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37°C either by Soluble Murine CEACAM1 Receptors or by pH 8. Journal of Virology, 2003, 77, 830-840.	1.5	106
24	Demyelination Determinants Map to the Spike Glycoprotein Gene of Coronavirus Mouse Hepatitis Virus. Journal of Virology, 2000, 74, 9206-9213.	1.5	101
25	Enhanced Expression and Purification of Membrane Proteins by SUMO Fusion in Escherichia coli. Journal of Structural and Functional Genomics, 2005, 6, 103-111.	1.2	101
26	Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. Journal of NeuroVirology, 2002, 8, 381-391.	1.0	97
27	Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses. Antimicrobial Agents and Chemotherapy, 2014, 58, 4894-4898.	1.4	96
28	The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. Journal of Virology, 1997, 71, 996-1003.	1.5	96
29	Single-Amino-Acid Substitutions in Open Reading Frame (ORF) 1b-nsp14 and ORF 2a Proteins of the Coronavirus Mouse Hepatitis Virus Are Attenuating in Mice. Journal of Virology, 2005, 79, 3391-3400.	1.5	93
30	Pathogenesis of Murine Coronavirus in the Central Nervous System. Journal of Neurolmmune Pharmacology, 2010, 5, 336-354.	2.1	93
31	Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and NS4b Accessory Proteins during MERS Coronavirus Infection. MBio, 2019, 10, .	1.8	88
32	Inhibition of the Alpha/Beta Interferon Response by Mouse Hepatitis Virus at Multiple Levels. Journal of Virology, 2007, 81, 7189-7199.	1.5	81
33	Murine Coronavirus Spike Protein Determines the Ability of the Virus To Replicate in the Liver and Cause Hepatitis. Journal of Virology, 2001, 75, 2452-2457.	1.5	78
34	Murine hepatitis virusA model for virus-induced CNS demyelination. Journal of NeuroVirology, 2002, 8, 76-85.	1.0	74
35	Targeted Recombination within the Spike Gene of Murine Coronavirus Mouse Hepatitis Virus-A59: Q159 Is a Determinant of Hepatotropism. Journal of Virology, 1998, 72, 9628-9636.	1.5	73
36	Infection of the basal ganglia by a murine coronavirus. Science, 1985, 229, 877-879.	6.0	72

#	Article	IF	CITATIONS
37	Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expression and Purification, 2005, 42, 100-110.	0.6	72
38	MDA5 Is Critical to Host Defense during Infection with Murine Coronavirus. Journal of Virology, 2015, 89, 12330-12340.	1.5	70
39	Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. Journal of Virology, 1997, 71, 900-909.	1.5	70
40	The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Laboratory Animal Science, 1986, 36, 130-5.	0.3	65
41	The N-Terminal Domain of the Murine Coronavirus Spike Glycoprotein Determines the CEACAM1 Receptor Specificity of the Virus Strain. Journal of Virology, 2003, 77, 841-850.	1.5	63
42	The Spike Glycoprotein of Murine Coronavirus MHV-JHM Mediates Receptor-Independent Infection and Spread in the Central Nervous Systems of <i>Ceacam1a</i> ^{â^'/â^'} Mice. Journal of Virology, 2008, 82, 755-763.	1.5	61
43	Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. Journal of NeuroVirology, 2017, 23, 845-854.	1.0	60
44	Antibody Is Required for Clearance of Infectious Murine Hepatitis Virus A59 from the Central Nervous System, But Not the Liver. Journal of Immunology, 2001, 167, 5254-5263.	0.4	59
45	Both Spike and Background Genes Contribute to Murine Coronavirus Neurovirulence. Journal of Virology, 2006, 80, 6834-6843.	1.5	59
46	Cell-Type-Specific Type I Interferon Antagonism Influences Organ Tropism of Murine Coronavirus. Journal of Virology, 2011, 85, 10058-10068.	1.5	59
47	Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. Journal of Virology, 2017, 91, .	1.5	59
48	Coronavirus mouse hepatitis virus (MHV)-A59 causes a persistent, productive infection in primary glial cell cultures. Microbial Pathogenesis, 1987, 3, 79-86.	1.3	58
49	Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nature Communications, 2017, 8, 799.	5.8	58
50	Amino Acid Substitutions within the Leucine Zipper Domain of the Murine Coronavirus Spike Protein Cause Defects in Oligomerization and the Ability To Induce Cell-to-Cell Fusion. Journal of Virology, 1999, 73, 8152-8159.	1.5	57
51	Expression of Hemagglutinin Esterase Protein from Recombinant Mouse Hepatitis Virus Enhances Neurovirulence. Journal of Virology, 2005, 79, 15064-15073.	1.5	56
52	Identification of the murine coronavirus p28 cleavage site. Journal of Virology, 1995, 69, 809-813.	1.5	56
53	Identification of polypeptides encoded in open reading frame 1b of the putative polymerase gene of the murine coronavirus mouse hepatitis virus A59. Journal of Virology, 1991, 65, 3076-3082.	1.5	54
54	Murine Coronavirus-Induced Hepatitis: JHM Genetic Background Eliminates A59 Spike-Determined Hepatotropism. Journal of Virology, 2003, 77, 4972-4978.	1.5	53

#	Article	IF	CITATIONS
55	Cell-Type-Specific Activation of the Oligoadenylate Synthetase–RNase L Pathway by a Murine Coronavirus. Journal of Virology, 2013, 87, 8408-8418.	1.5	52
56	Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8+ T cells. Microbial Pathogenesis, 1995, 18, 211-221.	1.3	48
57	The nsp1, nsp13, and M Proteins Contribute to the Hepatotropism of Murine Coronavirus JHM.WU. Journal of Virology, 2015, 89, 3598-3609.	1.5	47
58	Demyelinating and Nondemyelinating Strains of Mouse Hepatitis Virus Differ in Their Neural Cell Tropism. Journal of Virology, 2008, 82, 5519-5526.	1.5	46
59	SARS: Lessons Learned from Other Coronaviruses. Viral Immunology, 2003, 16, 461-474.	0.6	44
60	Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal <i>Oas</i> Gene Expression and Independent of Virus-Induced Interferon. Journal of Virology, 2016, 90, 3160-3172.	1.5	44
61	Neither B cells nor T cells are required for CNS demyelination in mice persistently infected with MHV-A59. Journal of NeuroVirology, 2002, 8, 257-264.	1.0	43
62	Induction of glial cell MHC antigen expression in neurotropic coronavirus infections. Characterization of the H-2-inducing soluble factor elaborated by infected brain cells. Journal of Immunology, 1988, 140, 2068-72.	0.4	42
63	Murine AKAP7 Has a 2′,5′-Phosphodiesterase Domain That Can Complement an Inactive Murine Coronavirus ns2 Gene. MBio, 2014, 5, e01312-14.	1.8	41
64	Sabadinine:Â A Potential Non-Peptide Anti-Severe Acute-Respiratory-Syndrome Agent Identified Using Structure-Aided Design. Journal of Medicinal Chemistry, 2004, 47, 1079-1080.	2.9	39
65	Multiple regions of the murine coronavirus spike glycoprotein influence neurovirulence. Journal of NeuroVirology, 2001, 7, 421-431.	1.0	38
66	Murine Coronavirus Delays Expression of a Subset of Interferon-Stimulated Genes. Journal of Virology, 2010, 84, 5656-5669.	1.5	38
67	Organ-Specific Attenuation of Murine Hepatitis Virus Strain A59 by Replacement of Catalytic Residues in the Putative Viral Cyclic Phosphodiesterase ns2. Journal of Virology, 2009, 83, 3743-3753.	1.5	37
68	No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 505-507.	3.0	37
69	The ns 4 gene of mouse hepatitis virus (MHV), strain A 59 contains two ORFs and thus differs from ns 4 of the JHM and S strains. Archives of Virology, 1993, 129, 301-309.	0.9	36
70	CD4 and CD8 T cells are not major effectors of mouse hepatitis virus A59-induced demyelinating disease. Journal of NeuroVirology, 1997, 3, 225-228.	1.0	36
71	Analysis of the Host Transcriptome from Demyelinating Spinal Cord of Murine Coronavirus-Infected Mice. PLoS ONE, 2013, 8, e75346.	1.1	34
72	Zika Virus Production Is Resistant to RNase L Antiviral Activity. Journal of Virology, 2019, 93, .	1.5	34

#	Article	IF	CITATIONS
73	Murine Coronavirus Receptors Are Differentially Expressed in the Central Nervous System and Play Virus Strain-Dependent Roles in Neuronal Spread. Journal of Virology, 2010, 84, 11030-11044.	1.5	33
74	Mouse hepatitis virus A59 increases steady-state levels of MHC mRNAs in primary glial cell cultures and in the murine central nervous system. Microbial Pathogenesis, 1992, 13, 493-505.	1.3	32
75	Murine Coronavirus Cell Type Dependent Interaction with the Type I Interferon Response. Viruses, 2009, 1, 689-712.	1.5	31
76	Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L. Journal of Virology, 2017, 91, .	1.5	30
77	Structural Basis for 2â€2-5â€2-Oligoadenylate Binding and Enzyme Activity of a Viral RNase L Antagonist. Journal of Virology, 2015, 89, 6633-6645.	1.5	28
78	Induciton of MHC class I antigens on glial cells is dependent on persistent mouse hepatitis virus infection. Journal of Neuroimmunology, 1989, 22, 107-111.	1.1	27
79	Contributions of the Viral Genetic Background and a Single Amino Acid Substitution in an Immunodominant CD8 + T-Cell Epitope to Murine Coronavirus Neurovirulence. Journal of Virology, 2005, 79, 9108-9118.	1.5	26
80	Localization of mouse hepatitis virus open reading frame 1A derived proteins. Journal of NeuroVirology, 1998, 4, 594-605.	1.0	25
81	Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages. Infection and Immunity, 2016, 84, 998-1015.	1.0	25
82	The Murine Coronavirus Nucleocapsid Gene Is a Determinant of Virulence. Journal of Virology, 2010, 84, 1752-1763.	1.5	24
83	Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Research, 2017, 6, 1628.	0.8	23
84	The Spike Protein of Murine Coronavirus Mouse Hepatitis Virus Strain A59 Is Not Cleaved in Primary Glial Cells and Primary Hepatocytes. Journal of Virology, 1998, 72, 1606-1609.	1.5	23
85	Expression of Murine Coronavirus Recombinant Papain-Like Proteinase: Efficient Cleavage Is Dependent on the Lengths of both the Substrate and the Proteinase Polypeptides. Journal of Virology, 1999, 73, 2658-2666.	1.5	23
86	Genetic Determinants of Mouse Hepatitis Virus Strain 1 Pneumovirulence. Journal of Virology, 2010, 84, 9278-9291.	1.5	22
87	Effects of an Epitope-Specific CD8 + T-Cell Response on Murine Coronavirus Central Nervous System Disease: Protection from Virus Replication and Antigen Spread and Selection of Epitope Escape Mutants. Journal of Virology, 2004, 78, 1150-1159.	1.5	20
88	Increased Epitope-Specific CD8+ T Cells Prevent Murine Coronavirus Spread to the Spinal Cord and Subsequent Demyelination. Journal of Virology, 2005, 79, 3370-3381.	1.5	20
89	Murine Coronavirus Evolution In Vivo: Functional Compensation of a Detrimental Amino Acid Substitution in the Receptor Binding Domain of the Spike Glycoprotein. Journal of Virology, 2005, 79, 7629-7640.	1.5	20
90	MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20

#	Article	IF	CITATIONS
91	The virulence of mouse hepatitis virus strain A59 is not dependent on efficient spike protein cleavage and cell-to-cell fusion. Journal of NeuroVirology, 2002, 8, 400-410.	1.0	19
92	Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages. MBio, 2022, 13, e0375121.	1.8	18
93	Activation of RNase L in Egyptian Rousette Bat-Derived RoNi/7 Cells Is Dependent Primarily on OAS3 and Independent of MAVS Signaling. MBio, 2019, 10, .	1.8	17
94	A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. Proceedings of the United States of America, 2020, 117, 24802-24812.	3.3	17
95	Cellular Reservoirs for Coronavirus Infection of the Brain in β ₂ -Microglobulin Knockout Mice. Pathobiology, 1999, 67, 75-83.	1.9	16
96	Priming of CD8 ⁺ T Cells during Central Nervous System Infection with a Murine Coronavirus Is Strain Dependent. Journal of Virology, 2008, 82, 6150-6160.	1.5	15
97	SARS-CoV-2 Delta Variant (AY.3) in the Feces of a Domestic Cat. Viruses, 2022, 14, 421.	1.5	15
98	Receptor Specificity and Receptor-Induced Conformational Changes in Mouse Hepatitis Virus Spike Glycoprotein. Advances in Experimental Medicine and Biology, 2001, 494, 173-181.	0.8	14
99	Chemokine expression during mouse hepatitis virus-induced encephalitis: Contributions of the spike and background genes. Journal of NeuroVirology, 2008, 14, 5-16.	1.0	11
100	A general method for the induction and screening of antisera for cDNA-encoded polypeptides: antibodies specific for a coronavirus putative polymerase-encoding gene. Gene, 1989, 85, 413-420.	1.0	10
101	Replicase Genes of Murine Coronavirus Strains A59 and JHM Are Interchangeable: Differences in Pathogenesis Map to the 3′ One-Third of the Genome. Journal of Virology, 2007, 81, 1022-1026.	1.5	10
102	Antagonism of RNase L Is Required for Murine Coronavirus Replication in Kupffer Cells and Liver Sinusoidal Endothelial Cells but Not in Hepatocytes. Journal of Virology, 2016, 90, 9826-9832.	1.5	8
103	Pathogenesis of neurotropic murine coronavirus is multifactorial. Trends in Pharmacological Sciences, 2011, 32, 2-7.	4.0	6
104	Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
105	Targeted Mutations in the Fusion Peptide Region of La Crosse Virus Attenuate Neuroinvasion and Confer Protection against Encephalitis. Viruses, 2022, 14, 1464.	1.5	5
106	A novel full-length isoform of murine pregnancy-specific glycoprotein 16 (psg16) is expressed in the brain but does not mediate murine coronavirus (MHV) entry. Journal of NeuroVirology, 2012, 18, 138-143.	1.0	3
107	Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Research, 2019, 162, 142-150.	1.9	3
108	The C12 Mutant of MHV-A59 is Very Weakly Demyelinating and has Five Amino Acid Substitutions Restricted to the Spike and Replicase Genes. Advances in Experimental Medicine and Biology, 1998, 440, 627-633.	0.8	2

#	Article	IF	CITATIONS
109	Further in vitro characterization of mouse hepatitis virus papain-like proteinase 1: Cleavage sequence requirements within PP1a. Journal of NeuroVirology, 2002, 8, 143-149.	1.0	1
110	Activation and Antagonism of the OAS–RNase L Pathway. Proceedings (mdpi), 2020, 50, 14.	0.2	1