
Ruth C Massey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297622/publications.pdf Version: 2024-02-01

RIITH C MASSEV

#	Article	IF	CITATIONS
1	Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections. PLoS Pathogens, 2012, 8, e1002626.	4.7	237
2	Predicting the virulence of MRSA from its genome sequence. Genome Research, 2014, 24, 839-849.	5.5	210
3	Staphylococcus aureusclumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cellular Microbiology, 2002, 4, 759-770.	2.1	202
4	Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology (United Kingdom), 2003, 149, 643-654.	1.8	184
5	Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cellular Microbiology, 2001, 3, 839-851.	2.1	162
6	The <i>ica</i> Operon and Biofilm Production in Coagulase-Negative Staphylococci Associated with Carriage and Disease in a Neonatal Intensive Care Unit. Journal of Clinical Microbiology, 2002, 40, 382-388.	3.9	160
7	Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Molecular Ecology, 2003, 12, 3109-3121.	3.9	144
8	Interspecific competition and siderophore-mediated cooperation in <i>Pseudomonas aeruginosa</i> . ISME Journal, 2008, 2, 49-55.	9.8	142
9	Staphylococcus aureus Host Cell Invasion and Virulence in Sepsis Is Facilitated by the Multiple Repeats within FnBPA. PLoS Pathogens, 2010, 6, e1000964.	4.7	124
10	Methicillin Resistance Reduces the Virulence of Healthcare-Associated Methicillin-Resistant Staphylococcus aureus by Interfering With the agr Quorum Sensing System. Journal of Infectious Diseases, 2012, 205, 798-806.	4.0	124
11	Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Current Biology, 2001, 11, 1810-1814.	3.9	120
12	Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus. PLoS Biology, 2015, 13, e1002229.	5.6	120
13	Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nature Microbiology, 2017, 2, 1381-1388.	13.3	118
14	Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature Communications, 2018, 9, 5034.	12.8	115
15	Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Medicine, 2014, 6, 109.	8.2	105
16	Natural mutations in a <i>Staphylococcus aureus</i> virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3101-10.	7.1	103
17	Interference competition and parasite virulence. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 785-788.	2.6	95
18	Severe infections emerge from commensal bacteria by adaptive evolution. ELife, 2017, 6, .	6.0	93

RUTH C MASSEY

#	Article	IF	CITATIONS
19	Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 45-49.	2.6	90
20	Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infection and Immunity, 2015, 83, 3445-3457.	2.2	81
21	The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission?. Nature Reviews Microbiology, 2006, 4, 953-958.	28.6	78
22	Offsetting virulence and antibiotic resistance costs by MRSA. ISME Journal, 2010, 4, 577-584.	9.8	72
23	How does Staphylococcus aureus escape the bloodstream?. Trends in Microbiology, 2011, 19, 184-190.	7.7	69
24	Staphylococcus aureus Keratinocyte Invasion Is Dependent upon Multiple High-Affinity Fibronectin-Binding Repeats within FnBPA. PLoS ONE, 2011, 6, e18899.	2.5	69
25	From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence?. Nature Reviews Microbiology, 2012, 10, 791-797.	28.6	62
26	Bacterial toxins: Offensive, defensive, or something else altogether?. PLoS Pathogens, 2017, 13, e1006452.	4.7	53
27	Oxacillin Alters the Toxin Expression Profile of Community-Associated Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 1100-1107.	3.2	51
28	Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. MBio, 2019, 10, .	4.1	50
29	Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Medicine, 2018, 10, 65.	8.2	49
30	Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.	13.3	47
31	Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. Genome Biology, 2018, 19, 94.	8.8	43
32	Staphylococcus aureus Extracellular Adherence Protein Triggers TNFα Release, Promoting Attachment to Endothelial Cells via Protein A. PLoS ONE, 2012, 7, e43046.	2.5	43
33	Agr Interference between Clinical Staphylococcus aureus Strains in an Insect Model of Virulence. Journal of Bacteriology, 2006, 188, 7686-7688.	2.2	42
34	Molecular mechanisms of <i>Staphylococcus aureus</i> nasopharyngeal colonization. Molecular Oral Microbiology, 2012, 27, 1-10.	2.7	32
35	Staphylococcus aureus Interaction with Phospholipid Vesicles – A New Method to Accurately Determine Accessory Gene Regulator (agr) Activity. PLoS ONE, 2014, 9, e87270.	2.5	30
36	Evidence for Steric Regulation of Fibrinogen Binding to Staphylococcus aureus Fibronectin-binding Protein A (FnBPA). Journal of Biological Chemistry, 2014, 289, 12842-12851.	3.4	29

RUTH C MASSEY

#	Article	IF	CITATIONS
37	Identification of Factors Contributing to T-Cell Toxicity of <i>Staphylococcus aureus</i> Clinical Isolates. Journal of Clinical Microbiology, 2008, 46, 2112-2114.	3.9	27
38	Invasion of Human Cells by a Bacterial Pathogen. Journal of Visualized Experiments, 2011, , .	0.3	27
39	Environmental regulation of mutation rates at specific sites. Trends in Microbiology, 2002, 10, 580-584.	7.7	26
40	Post-acute COVID-19 associated with evidence of bystander T-cell activation and a recurring antibiotic-resistant bacterial pneumonia. ELife, 2020, 9, .	6.0	26
41	Antibiotic-resistant sub-populations of the pathogenic bacterium Staphylococcus aureus confer population-wide resistance. Current Biology, 2002, 12, R686-R687.	3.9	22
42	Functional Blocking of Staphylococcus aureus Adhesins following Growth in Ex Vivo Media. Infection and Immunity, 2002, 70, 5339-5345.	2.2	21
43	The <i>Staphyloccous aureus</i> Eap Protein Activates Expression of Proinflammatory Cytokines. Infection and Immunity, 2008, 76, 2164-2168.	2.2	21
44	Environmentally constrained mutation and adaptive evolution in Salmonella. Current Biology, 1999, 9, 1477-1481.	3.9	20
45	The use of insect models to study human pathogens. Drug Discovery Today: Disease Models, 2007, 4, 105-110.	1.2	19
46	Timing Is Everything: Impact of Naturally Occurring <i>Staphylococcus aureus</i> AgrC Cytoplasmic Domain Adaptive Mutations on Autoinduction. Journal of Bacteriology, 2019, 201, .	2.2	19
47	Clonal Distribution and Phase-Variable Expression of a Major Histocompatibility Complex Analogue Protein in Staphylococcus aureus. Journal of Bacteriology, 2005, 187, 2917-2919.	2.2	15
48	Using functional genomics to decipher the complexity of microbial pathogenicity. Current Genetics, 2016, 62, 523-525.	1.7	15
49	A functional menadione biosynthesis pathway is required for capsule production by Staphylococcus aureus. Microbiology (United Kingdom), 2021, 167, .	1.8	11
50	Use of Peptide-Major Histocompatibility Complex Tetramer Technology To Study Interactions between <i>Staphylococcus aureus</i> Proteins and Human Cells. Infection and Immunity, 2007, 75, 5711-5715.	2.2	10
51	Cytolytic toxin production by Staphylococcus aureus is dependent upon the activity of the protoheme IX farnesyltransferase. Scientific Reports, 2017, 7, 13744.	3.3	10
52	Significant variability exists in the cytotoxicity of global methicillin-resistant Staphylococcus aureus lineages. Microbiology (United Kingdom), 2021, 167, .	1.8	10
53	A Small Membrane Stabilizing Protein Critical to the Pathogenicity of Staphylococcus aureus. Infection and Immunity, 2020, 88, .	2.2	9
54	Wall Teichoic Acids Facilitate the Release of Toxins from the Surface of Staphylococcus aureus. Microbiology Spectrum, 2022, 10, .	3.0	9

RUTH C MASSEY

#	Article	IF	CITATIONS
55	The MpsB protein contributes to both the toxicity and immune evasion capacity of Staphylococcus aureus. Microbiology (United Kingdom), 2021, 167, .	1.8	8
56	The Virulence Plasmid of Salmonella typhimurium Contains an Autoregulated Gene, rlgA, That Codes for a Resolvase-like DNA Binding Protein. Plasmid, 2000, 44, 24-33.	1.4	5
57	Targeted control of pneumolysin production by a mobile genetic element in Streptococcus pneumoniae. Microbial Genomics, 2022, 8, .	2.0	5
58	Promiscuous bacteria have staying power. ELife, 2017, 6, .	6.0	2