Andreas Kispert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FGFR2 signaling enhances the SHH-BMP4 signaling axis in early ureter development. Development (Cambridge), 2022, 149, .	2.5	6
2	Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochemical Journal, 2022, 479, 91-109.	3.7	6
3	Notch signaling is a novel regulator of visceral smooth muscle cell differentiation in the murine ureter. Development (Cambridge), 2022, , .	2.5	1
4	A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica, 2021, 106, 1354-1367.	3.5	16
5	Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung. Respiratory Research, 2021, 22, 85.	3.6	8
6	Regulation of otocyst patterning by <i>Tbx2</i> and <i>Tbx3</i> is required for inner ear morphogenesis in the mouse. Development (Cambridge), 2021, 148, .	2.5	32
7	<i>Uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase</i> deletion in mice leads to lethal intracerebral hemorrhage during embryonic development. Glycobiology, 2021, 31, 1478-1489.	2.5	5
8	WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. Journal of Clinical Investigation, 2021, 131, .	8.2	17
9	Generation of hiPSC-derived low threshold mechanoreceptors containing axonal termini resembling bulbous sensory nerve endings and expressing Piezo1 and Piezo2. Stem Cell Research, 2021, 56, 102535.	0.7	4
10	Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut, 2020, 69, 1104-1115.	12.1	37
11	Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with <i><scp>W</scp>ilms tumor 1</i> gene deletion in the stromal compartment of the developing kidney. Journal of Pathology, 2020, 252, 290-303.	4.5	6
12	Rare heterozygous GDF6 variants in patients with renal anomalies. European Journal of Human Genetics, 2020, 28, 1681-1693.	2.8	7
13	Inflammation-like changes in the urothelium of Lifr-deficient mice and LIFR-haploinsufficient humans with urinary tract anomalies. Human Molecular Genetics, 2020, 29, 1192-1204.	2.9	2
14	Heparan Sulfate–Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circulation Research, 2019, 125, 787-801.	4.5	35
15	Dexamethasone improves therapeutic outcomes in a preclinical bacterial epididymitis mouse model. Human Reproduction, 2019, 34, 1195-1205.	0.9	14
16	Mesothelial mobilization in the developing lung and heart differs in timing, quantity, and pathway dependency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L767-L783.	2.9	11
17	Delayed onset of smooth muscle cell differentiation leads to hydroureter formation in mice with conditional loss of the zinc finger transcription factor gene <i>Gata2</i> in the ureteric mesenchyme. Journal of Pathology, 2019, 248, 452-463.	4.5	11
18	TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respiratory Research, 2019, 20, 292.	3.6	8

#	Article	IF	CITATIONS
19	Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. Journal of Hepatology, 2019, 70, 722-734.	3.7	38
20	Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight, 2019, 4, .	5.0	47
21	TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development (Cambridge), 2018, 145, .	2.5	32
22	Proteomic analysis identifies transcriptional cofactors and homeobox transcription factors as TBX18 binding proteins. PLoS ONE, 2018, 13, e0200964.	2.5	9
23	Sialic acid is a critical fetal defense against maternal complement attack. Journal of Clinical Investigation, 2018, 129, 422-436.	8.2	43
24	Mutations in the leukemia inhibitory factor receptor (LIFR) gene and Lifr deficiency cause urinary tract malformations. Human Molecular Genetics, 2017, 26, 1716-1731.	2.9	23
25	Diversification of Cell Lineages in Ureter Development. Journal of the American Society of Nephrology: JASN, 2017, 28, 1792-1801.	6.1	29
26	Retinoic acid signaling maintains epithelial and mesenchymal progenitors in the developing mouse ureter. Scientific Reports, 2017, 7, 14803.	3.3	16
27	<i>Tbx15</i> Defines a Glycolytic Subpopulation and White Adipocyte Heterogeneity. Diabetes, 2017, 66, 2822-2829.	0.6	37
28	BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Human Molecular Genetics, 2017, 26, 3553-3563.	2.9	24
29	A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genetics, 2017, 13, e1006951.	3.5	38
30	Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS ONE, 2016, 11, e0156787.	2.5	7
31	Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate. PLoS ONE, 2016, 11, e0154413.	2.5	8
32	Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Developmental Cell, 2016, 39, 239-253.	7.0	82
33	GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Scientific Reports, 2016, 6, 20007.	3.3	27
34	Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. Journal of Molecular and Cellular Cardiology, 2016, 97, 140-149.	1.9	20
35	Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT). Human Genetics, 2016, 135, 69-87.	3.8	25
36	Eph/ephrin signaling in the kidney and lower urinary tract. Pediatric Nephrology, 2016, 31, 359-371.	1.7	12

#	Article	IF	CITATIONS
37	Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. American Journal of Human Genetics, 2015, 97, 291-301.	6.2	72
38	Fgfr2 is required for the expansion of the early adrenocortical primordium. Molecular and Cellular Endocrinology, 2015, 413, 168-177.	3.2	18
39	Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nature Communications, 2015, 6, 8054.	12.8	76
40	MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. Journal of Hepatology, 2015, 62, 101-110.	3.7	35
41	Upk3b Is Dispensable for Development and Integrity of Urothelium and Mesothelium. PLoS ONE, 2014, 9, e112112.	2.5	42
42	Wnt11 Is Required for Oriented Migration of Dermogenic Progenitor Cells from the Dorsomedial Lip of the Avian Dermomyotome. PLoS ONE, 2014, 9, e92679.	2.5	14
43	Nephric duct insertion requires EphA4/EphA7 signaling from the pericloacal mesenchyme. Development (Cambridge), 2014, 141, 3420-3430.	2.5	18
44	Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling. Journal of the American Society of Nephrology: JASN, 2014, 25, 2573-2583.	6.1	63
45	Ureter growth and differentiation. Seminars in Cell and Developmental Biology, 2014, 36, 21-30.	5.0	51
46	Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Developmental Biology, 2014, 391, 54-65.	2.0	22
47	Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration. Cardiovascular Research, 2014, 103, 509-520.	3.8	25
48	A distant downstream enhancer directs essential expression of Tbx18 in urogenital tissues. Developmental Biology, 2014, 392, 483-493.	2.0	5
49	Wnt6 Is Expressed in Granulomatous Lesions of <i>Mycobacterium tuberculosis</i> –Infected Mice and Is Involved in Macrophage Differentiation and Proliferation. Journal of Immunology, 2013, 191, 5182-5195.	0.8	66
50	Wnt6 Is Essential for Stromal Cell Proliferation During Decidualization in Mice1. Biology of Reproduction, 2013, 88, 5.	2.7	63
51	Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Developmental Biology, 2013, 380, 25-36.	2.0	70
52	Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovascular Research, 2013, 100, 411-421.	3.8	37
53	Tbx2 Terminates Shh/Fgf Signaling in the Developing Mouse Limb Bud by Direct Repression of Gremlin1. PLoS Genetics, 2013, 9, e1003467.	3.5	46
54	Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes Cdkn1a and Cdkn1b. PLoS Genetics, 2013, 9, e1003189.	3.5	72

4

#	Article	IF	CITATIONS
55	Inhibition of Sox2-dependent activation of <i>Shh</i> in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development (Cambridge), 2013, 140, 2299-2309.	2.5	61
56	Epicardial Lineages. Journal of Developmental Biology, 2013, 1, 32-46.	1.7	8
57	TSHZ3 and SOX9 Regulate the Timing of Smooth Muscle Cell Differentiation in the Ureter by Reducing Myocardin Activity. PLoS ONE, 2013, 8, e63721.	2.5	19
58	Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development (Cambridge), 2012, 139, 3099-3108.	2.5	40
59	Wt1 and Epicardial Fate Mapping. Circulation Research, 2012, 111, 165-169.	4.5	144
60	Tbx18 function in epicardial development. Cardiovascular Research, 2012, 96, 476-483.	3.8	37
61	Wnt/Ctnnb1 Signaling and the Mesenchymal Precursor Pools of the Heart. Trends in Cardiovascular Medicine, 2012, 22, 118-122.	4.9	9
62	Partial Absence of Pleuropericardial Membranes in Tbx18- and Wt1-Deficient Mice. PLoS ONE, 2012, 7, e45100.	2.5	25
63	Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cellular and Molecular Life Sciences, 2012, 69, 1377-1389.	5.4	110
64	Comparative analysis of Neph gene expression in mouse and chicken development. Histochemistry and Cell Biology, 2012, 137, 355-366.	1.7	29
65	Impaired stria vascularis integrity upon loss of E-cadherin in basal cells. Developmental Biology, 2011, 359, 95-107.	2.0	26
66	Wnt/β-Catenin Signaling Maintains the Mesenchymal Precursor Pool for Murine Sinus Horn Formation. Circulation Research, 2011, 109, e42-50.	4.5	24
67	Mechanisms of T-box gene function in the developing heart. Cardiovascular Research, 2011, 91, 212-222.	3.8	228
68	Notch Signaling Regulates Smooth Muscle Differentiation of Epicardium-Derived Cells. Circulation Research, 2011, 108, 813-823.	4.5	157
69	Tbx20, Smads, and the Atrioventricular Canal. Trends in Cardiovascular Medicine, 2010, 20, 109-114.	4.9	16
70	Wt1 and Retinoic Acid Signaling in the Subcoelomic Mesenchyme Control the Development of the Pleuropericardial Membranes and the Sinus Horns. Circulation Research, 2010, 106, 1212-1220.	4.5	40
71	Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Human Molecular Genetics, 2010, 19, 4918-4929.	2.9	48
72	The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovascular Research, 2010, 87, 92-101.	3.8	142

#	Article	IF	CITATIONS
73	Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse. Developmental Biology, 2010, 342, 51-62.	2.0	42
74	Development of the Pacemaker Tissues of the Heart. Circulation Research, 2010, 106, 240-254.	4.5	272
75	Formation of the Sinus Node Head and Differentiation of Sinus Node Myocardium Are Independently Regulated by Tbx18 and Tbx3. Circulation Research, 2009, 104, 388-397.	4.5	264
76	Tbx20 Interacts With Smads to Confine <i>Tbx2</i> Expression to the Atrioventricular Canal. Circulation Research, 2009, 105, 442-452.	4.5	108
77	Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology, 2009, 49, 969-978.	7.3	101
78	Tbx18 and the fate of epicardial progenitors. Nature, 2009, 458, E8-E9.	27.8	248
79	Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse. Developmental Biology, 2009, 336, 145-155.	2.0	37
80	The <i>Tbx2</i> ⁺ Primary Myocardium of the Atrioventricular Canal Forms the Atrioventricular Node and the Base of the Left Ventricle. Circulation Research, 2009, 104, 1267-1274.	4.5	147
81	TBX15 Mutations Cause Craniofacial Dysmorphism, Hypoplasia of Scapula and Pelvis, and Short Stature in Cousin Syndrome. American Journal of Human Genetics, 2008, 83, 649-655.	6.2	60
82	Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes. Development (Cambridge), 2008, 135, 1725-1734.	2.5	58
83	T-box Protein Tbx18 Interacts with the Paired Box Protein Pax3 in the Development of the Paraxial Mesoderm. Journal of Biological Chemistry, 2008, 283, 25372-25380.	3.4	32
84	Transcriptional Repression by the T-box Proteins Tbx18 and Tbx15 Depends on Groucho Corepressors. Journal of Biological Chemistry, 2007, 282, 25748-25759.	3.4	86
85	TBX22 Missense Mutations Found in Patients with X-Linked Cleft Palate Affect DNA Binding, Sumoylation, and Transcriptional Repression. American Journal of Human Genetics, 2007, 81, 700-712.	6.2	84
86	Formation of the Venous Pole of the Heart From an Nkx2–5 –Negative Precursor Population Requires Tbx18. Circulation Research, 2006, 98, 1555-1563.	4.5	263
87	Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. Journal of Comparative Neurology, 2006, 498, 466-475.	1.6	49
88	Tbx18 regulates the development of the ureteral mesenchyme. Journal of Clinical Investigation, 2006, 116, 663-674.	8.2	132
89	Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development (Cambridge), 2005, 132, 2697-2707.	2.5	200
90	The T-box transcription factor Tbx15 is required for skeletal development. Mechanisms of Development, 2005, 122, 131-144.	1.7	109

#	ARTICLE	IF	CITATIONS
91	The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes and Development, 2004, 18, 1209-1221.	5.9	143
92	Analysis of TBX18 expression in chick embryos. Development Genes and Evolution, 2004, 214, 407-11.	0.9	39
93	Cloning and expression analysis of the chick ortholog of TBX22, the gene mutated in X-linked cleft palate and ankyloglossia. Mechanisms of Development, 2002, 117, 321-325.	1.7	26
94	Characterization of Pax-2 Regulatory Sequences That Direct Transgene Expression in the Wolffian Duct and Its Derivatives. Developmental Biology, 2001, 229, 128-140.	2.0	53
95	Cloning and expression analysis of the mouse T-box gene Tbx18. Mechanisms of Development, 2001, 100, 83-86.	1.7	208
96	Cloning and expression analysis of the mouse T-box gene Tbx20. Mechanisms of Development, 2001, 100, 87-91.	1.7	112
97	Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nature Genetics, 2001, 29, 310-314.	21.4	510
98	sFRP-2 is a target of the Wnt-4 signaling pathway in the developing metanephric kidney. Developmental Dynamics, 1998, 213, 440-451.	1.8	117
99	A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Development Genes and Evolution, 1997, 207, 330-339.	0.9	69
100	The Brachyury protein: A T-domain transcription factor. Seminars in Developmental Biology, 1995, 6, 395-403.	1.3	22
101	S100A1 expression characterizes terminally differentiated superficial cells in the urothelium of the murine bladder and ureter. Histochemistry and Cell Biology, 0, , .	1.7	1