List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6297246/publications.pdf Version: 2024-02-01

		30047	18633
130	14,511	54	119
papers	citations	h-index	g-index
137	137	137	12153
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polyamide membranes with nanoscale Turing structures for water purification. Science, 2018, 360, 518-521.	6.0	996
2	Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Â Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005, 127, 14473-14478.	6.6	918
3	Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules, 2008, 9, 1357-1361.	2.6	712
4	Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007, 28, 4192-4199.	5.7	640
5	Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006, 22, 10072-10077.	1.6	601
6	Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. Journal of Physical Chemistry B, 2006, 110, 10799-10804.	1.2	497
7	Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 2009, 30, 5234-5240.	5.7	465
8	Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:Â The Molecular Basis for Nonfouling Behavior. Journal of Physical Chemistry B, 2005, 109, 2934-2941.	1.2	461
9	Dual-Functional Biomimetic Materials:Â Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006, 7, 3311-3315.	2.6	430
10	Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008, 29, 4285-4291.	5.7	424
11	A Switchable Biocompatible Polymer Surface with Selfâ€Sterilizing and Nonfouling Capabilities. Angewandte Chemie - International Edition, 2008, 47, 8831-8834.	7.2	325
12	Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-Assembled Monolayers in the Presence of Water. Langmuir, 2008, 24, 10358-10364.	1.6	319
13	Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012, 28, 7436-7441.	1.6	308
14	Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology, 2002, 75, 61-69.	2.1	301
15	Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006, 22, 2222-2226.	1.6	284
16	Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors and Bioelectronics, 2006, 22, 752-758.	5.3	274
17	Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials, 2009, 30, 5892-5896.	5.7	265
18	Controlling Antibody Orientation on Charged Self-Assembled Monolayers. Langmuir, 2003, 19, 2859-2864.	1.6	232

#	Article	IF	CITATIONS
19	Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008, 29, 4592-4597.	5.7	231
20	Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005, 21, 2633-2636.	1.6	230
21	Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 2008, 24, 9211-9214.	1.6	220
22	Strong Resistance of a Thin Crystalline Layer of Balanced Charged Groups to Protein Adsorption. Langmuir, 2006, 22, 8186-8191.	1.6	211
23	Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1415-1427.	1.9	170
24	Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 4216-4219.	2.2	170
25	Seawater desalination technology and engineering in China: A review. Desalination, 2021, 498, 114728.	4.0	163
26	Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. Journal of Materials Chemistry B, 2014, 2, 2983.	2.9	149
27	DNA Directed Protein Immobilization on Mixed ssDNA/Oligo(ethylene glycol) Self-Assembled Monolayers for Sensitive Biosensors. Analytical Chemistry, 2004, 76, 6967-6972.	3.2	148
28	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers of Alkanethiols on Au(111). Langmuir, 2000, 16, 9287-9293.	1.6	133
29	Development of Biocompatible Interpenetrating Polymer Networks Containing a Sulfobetaine-Based Polymer and a Segmented Polyurethane for Protein Resistance. Biomacromolecules, 2007, 8, 122-127.	2.6	132
30	DNA-Directed Protein Immobilization on Mixed Self-Assembled Monolayers via a Streptavidin Bridge. Langmuir, 2004, 20, 8090-8095.	1.6	130
31	Orientation of Adsorbed Antibodies on Charged Surfaces by Computer Simulation Based on a United-Residue Model. Langmuir, 2003, 19, 3472-3478.	1.6	129
32	Investigation of the Hydration of Nonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012, 28, 2137-2144.	1.6	126
33	DNA-Directed Protein Immobilization for Simultaneous Detection of Multiple Analytes by Surface Plasmon Resonance Biosensor. Analytical Chemistry, 2006, 78, 1515-1519.	3.2	124
34	Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. Sensors and Actuators B: Chemical, 2003, 90, 22-30.	4.0	116
35	Origin of repulsive force and structure/dynamics of interfacial water in OEG–protein interactions: a molecular simulation study. Physical Chemistry Chemical Physics, 2008, 10, 5539.	1.3	112
36	Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta Biomaterialia, 2018, 71, 293-305.	4.1	112

#	Article	IF	CITATIONS
37	Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2005, 107, 193-201.	4.0	111
38	Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2005, 107, 202-208.	4.0	111
39	Strong Resistance of Oligo(phosphorylcholine) Self-Assembled Monolayers to Protein Adsorption. Langmuir, 2006, 22, 2418-2421.	1.6	92
40	Hydration of "Nonfouling―Functional Groups. Journal of Physical Chemistry B, 2009, 113, 197-201.	1.2	91
41	Controlling DNA Orientation on Mixed ssDNA/OEG SAMs. Langmuir, 2006, 22, 4694-4698.	1.6	89
42	Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. Journal of Physical Chemistry B, 2008, 112, 15269-15274.	1.2	89
43	Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomaterialia, 2020, 116, 84-104.	4.1	87
44	The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 2008, 29, 4719-4725.	5.7	83
45	Protein Adsorption on Alkanethiolate Self-Assembled Monolayers:Â Nanoscale Surface Structural and Chemical Effects. Langmuir, 2003, 19, 2974-2982.	1.6	78
46	Antifouling Zwitterionic Coating via Electrochemically Mediated Atom Transfer Radical Polymerization on Enzyme-Based Glucose Sensors for Long-Time Stability in 37 °C Serum. Langmuir, 2016, 32, 11763-11770.	1.6	76
47	Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed <scp>l</scp> -glutamic acid and <scp>l</scp> -lysine polypeptide for site-specific drug delivery. Journal of Materials Chemistry B, 2017, 5, 935-943.	2.9	76
48	Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. Journal of Biomedical Materials Research - Part A, 2005, 74A, 23-31.	2.1	73
49	The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012, 33, 7945-7951.	5.7	71
50	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111). Journal of Physical Chemistry B, 2001, 105, 2975-2980.	1.2	69
51	Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta Biomaterialia, 2014, 10, 751-760.	4.1	68
52	Development of Long-Circulating Zwitterionic Cross-Linked Micelles for Active-Targeted Drug Delivery. Biomacromolecules, 2016, 17, 2010-2018.	2.6	61
53	Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir, 2019, 35, 1273-1283.	1.6	61
54	Molecular-Scale Mixed Alkanethiol Monolayers of Different Terminal Groups on Au(111) by Low-Current Scanning Tunneling Microscopy. Langmuir, 2003, 19, 3266-3271.	1.6	58

#	Article	IF	CITATIONS
55	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie - International Edition, 2020, 59, 9586-9593.	7.2	56
56	In Situ Single-Molecule Detection of Antibodyâ^'Antigen Binding by Tapping-Mode Atomic Force Microscopy. Analytical Chemistry, 2002, 74, 6017-6022.	3.2	52
57	Measurements of Friction and Adhesion for Alkyl Monolayers on Si(111) by Scanning Force Microscopy. Langmuir, 2002, 18, 5448-5456.	1.6	51
58	Investigation of the interaction between poly(ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta Biomaterialia, 2013, 9, 6414-6420.	4.1	50
59	Development of Zwitterionic Polymer-Based Doxorubicin Conjugates: Tuning the Surface Charge To Prolong the Circulation and Reduce Toxicity. Langmuir, 2014, 30, 3764-3774.	1.6	50
60	Reducing the Cytotoxity of Poly(amidoamine) Dendrimers by Modification of a Single Layer of Carboxybetaine. Langmuir, 2013, 29, 8914-8921.	1.6	49
61	Surface protonation/deprotonation controlled instant affinity switch of nano drug vehicle (NDV) for pH triggered tumor cell targeting. Biomaterials, 2015, 62, 116-127.	5.7	49
62	Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. Sensors and Actuators B: Chemical, 2007, 124, 452-458.	4.0	46
63	Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels, 2022, 8, 46.	2.1	45
64	Development of robust biocompatible silicone with high resistance to protein adsorption and bacterial adhesion. Acta Biomaterialia, 2011, 7, 2053-2059.	4.1	44
65	Biocompatible long-circulating star carboxybetaine polymers. Journal of Materials Chemistry B, 2015, 3, 440-448.	2.9	42
66	Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 174714.	1.2	41
67	Detecting the Adsorption of Dye Molecules in Homogeneous Poly(propylene imine) Dendrimer Monolayers by Surface Plasmon Resonance Sensor. Journal of the American Chemical Society, 2002, 124, 3395-3401.	6.6	39
68	Zwitterion-like, Charge-Balanced Ultrathin Layers on Polymeric Membranes for Antifouling Property. Environmental Science & Technology, 2018, 52, 4457-4463.	4.6	39
69	Development of Nonstick and Drug-Loaded Wound Dressing Based on the Hydrolytic Hydrophobic Poly(carboxybetaine) Ester Analogue. ACS Applied Materials & Interfaces, 2013, 5, 10489-10494.	4.0	38
70	Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate). Colloids and Surfaces B: Biointerfaces, 2016, 146, 888-894.	2.5	37
71	Gene transfection in complex media using PCBMAEE-PCBMA copolymer with both hydrolytic and zwitterionic blocks. Biomaterials, 2014, 35, 7909-7918.	5.7	36
72	"Stealth―dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. International Journal of Pharmaceutics, 2021, 600, 120502.	2.6	35

#	Article	IF	CITATIONS
73	Development of a Stable Dual Functional Coating with Low Non-specific Protein Adsorption and High Sensitivity for New Superparamagnetic Nanospheres. Langmuir, 2011, 27, 13669-13674.	1.6	34
74	Highly stable and biocompatible dendrimer-encapsulated gold nanoparticle catalysts for the reduction of 4-nitrophenol. New Journal of Chemistry, 2017, 41, 8399-8406.	1.4	33
75	Synthesis of gold nanoflowers stabilized with amphiphilic daptomycin for enhanced photothermal antitumor and antibacterial effects. International Journal of Pharmaceutics, 2020, 580, 119231.	2.6	33
76	Green synthesis of stable platinum nanoclusters with enhanced peroxidase-like activity for sensitive detection of glucose and glutathione. Microchemical Journal, 2021, 166, 106202.	2.3	33
77	Bio-inspired poly-DL-serine materials resist the foreign-body response. Nature Communications, 2021, 12, 5327.	5.8	33
78	Development of Robust and Recoverable Ultralow-Fouling Coatings Based on Poly(carboxybetaine) Ester Analogue. ACS Applied Materials & Interfaces, 2015, 7, 16938-16945.	4.0	32
79	Zwitterion threaded metal–organic framework membranes for direct methanol fuel cells. Journal of Materials Chemistry A, 2018, 6, 19547-19554.	5.2	32
80	Development of nonfouling polypeptides with uniform alternating charges by polycondensation of the covalently bonded dimer of glutamic acid and lysine. Journal of Materials Chemistry B, 2014, 2, 577-584.	2.9	31
81	Highly hemocompatible zwitterionic micelles stabilized by reversible cross-linkage for anti-cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 115, 384-390.	2.5	31
82	Green synthesis of palladium nanoparticles using lentinan for catalytic activity and biological applications. RSC Advances, 2019, 9, 38265-38270.	1.7	31
83	Nanoparticle Delivery: Targeting and Nonspecific Binding. MRS Bulletin, 2009, 34, 432-440.	1.7	30
84	A novel zwitterionic copolymer with a short poly(methyl acrylic acid) block for improving both conjugation and separation efficiency of a protein without losing its bioactivity. Journal of Materials Chemistry B, 2013, 1, 2482.	2.9	28
85	The fabrication of superlow protein absorption zwitterionic coating by electrochemically mediated atom transfer radical polymerization and its application. Acta Biomaterialia, 2015, 13, 142-149.	4.1	28
86	Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges. Materials Science and Engineering C, 2018, 93, 332-340.	3.8	28
87	Nanoscale Frictional Properties of Mixed Alkanethiol Self-Assembled Monolayers on Au(111) by Scanning Force Microscopy:Â Humidity Effect. Langmuir, 2003, 19, 666-671.	1.6	25
88	Understanding Three Hydration-Dependent Transitions of Zwitterionic Carboxybetaine Hydrogel by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 11575-11580.	1.2	23
89	Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic Hydrogels. Langmuir, 2019, 35, 1828-1836.	1.6	22
90	Water Mobility: A Bridge between the Hofmeister Series of lons and the Friction of Zwitterionic Surfaces in Aqueous Environments. Journal of Physical Chemistry C, 2011, 115, 15525-15531.	1.5	21

#	Article	IF	CITATIONS
91	Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA). Acta Biomaterialia, 2016, 40, 172-181.	4.1	21
92	Highly biocompatible zwitterionic dendrimer-encapsulated platinum nanoparticles for sensitive detection of glucose in complex medium. New Journal of Chemistry, 2019, 43, 9076-9083.	1.4	21
93	Highly biocompatible jujube polysaccharide-stabilized palladium nanoparticles with excellent catalytic performance. New Journal of Chemistry, 2019, 43, 7646-7652.	1.4	20
94	Resistance to Long-Term Bacterial Biofilm Formation Based on Hydrolysis-Induced Zwitterion Material with Biodegradable and Self-Healing Properties. Langmuir, 2020, 36, 3251-3259.	1.6	20
95	Development of polypeptide-based zwitterionic amphiphilic micelles for nanodrug delivery. Journal of Materials Chemistry B, 2016, 4, 5256-5264.	2.9	19
96	Biocompatible bovine serum albumin stabilized platinum nanoparticles for the oxidation of morin. New Journal of Chemistry, 2019, 43, 8774-8780.	1.4	19
97	Dendrimer-Based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Applied Polymer Materials, 2020, 2, 159-171.	2.0	18
98	Biodegradable copolypeptide hydrogel prodrug accelerates dermal wound regeneration by enhanced angiogenesis and epithelialization. RSC Advances, 2018, 8, 10620-10626.	1.7	17
99	Biocompatible Dendrimer-Encapsulated Palladium Nanoparticles for Oxidation of Morin. ACS Omega, 2019, 4, 18685-18691.	1.6	17
100	Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. Matrix Biology, 2006, 25, 20-26.	1.5	16
101	Green Synthesis of Gold Nanoparticles Using Longan Polysaccharide and their Reduction of 4-nitrophenol and Biological Applications. Nano, 2020, 15, 2050002.	0.5	16
102	Preparation and characterization of cyclodextrin functionalized polydimethylsiloxane films via interfacial self-assembly. Applied Materials Today, 2017, 9, 176-183.	2.3	15
103	Highly stable and biocompatible zwitterionic dendrimer-encapsulated palladium nanoparticles that maintain their catalytic activity in bacterial solution. New Journal of Chemistry, 2018, 42, 19740-19748.	1.4	15
104	Ultra-small biocompatible jujube polysaccharide stabilized platinum nanoclusters for glucose detection. Analyst, The, 2019, 144, 5179-5185.	1.7	15
105	Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance. Transition Metal Chemistry, 2020, 45, 31-39.	0.7	15
106	Zwitterionic Polypeptide-Based Nanodrug Augments pH-Triggered Tumor Targeting <i>via</i> Prolonging Circulation Time and Accelerating Cellular Internalization. ACS Applied Materials & Interfaces, 2020, 12, 46639-46652.	4.0	14
107	Molecular simulation studies of nanoscale friction between phosphorylcholine self-assembled monolayer surfaces: Correlation between surface hydration and friction. Journal of Chemical Physics, 2007, 127, 084708.	1.2	13
108	An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device. Journal of Materials Chemistry B, 2020, 8, 2443-2453.	2.9	13

SHENGFU CHEN

#	Article	IF	CITATIONS
109	Development of biocompatible PAMAM â€~dendrizyme' to maintain catalytic activity in biological complex medium. Journal of Materials Chemistry B, 2013, 1, 4259.	2.9	12
110	How to convincingly measure low concentration samples with optical label-free biosensors. Sensors and Actuators B: Chemical, 2020, 306, 127568.	4.0	12
111	Highly water-soluble, pH sensitive and biocompatible PAMAM â€~dendrizyme' to maintain catalytic activity in complex medium. Materials Science and Engineering C, 2017, 78, 315-323.	3.8	11
112	Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2267-2280.	1.9	10
113	Investigation of nonfouling polypeptides of poly(glutamic acid) with lysine side chains synthesized by EDC·HCl/HOBt chemistry. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1717-1729.	1.9	9
114	Enhancing antifouling property of reverse osmosis membranes via surface tethered with the aminated cation of ionic liquids. Desalination, 2021, 517, 115257.	4.0	9
115	Development of a Negative-Biased Zwitterionic Polypeptide-Based Nanodrug Vehicle for pH-Triggered Cellular Uptake and Accelerated Drug Release. Langmuir, 2020, 36, 7181-7189.	1.6	8
116	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie, 2020, 132, 9673-9680.	1.6	7
117	Removal of Disperse Dyes from Wastewater by Nano-iron Modified Goldmine Waste-solid Assisted AOPs. Procedia Engineering, 2011, 18, 358-362.	1.2	6
118	Capillary Differentiation of Endothelial Cells on Microgrooved Surfaces. Journal of Physical Chemistry C, 2007, 111, 14602-14606.	1.5	5
119	Development of Nonfouling Zwitterionic Copolymerized Peptides Based on Glutamic Acid and Lysine Dimers for Adjustable Enzymatic Degradation. Langmuir, 2021, 37, 5776-5782.	1.6	5
120	Chaotrope vs. kosmotrope: Which one has lower friction?. Journal of Chemical Physics, 2011, 135, 154702.	1.2	4
121	Development of a Protein Mimic with Peptide Ligands to Enhance Specific Sensing and Targeting by the Zwitterionic Surface Engineering of Poly(amido amine) Dendrimers. Advanced Materials Interfaces, 2014, 1, 1300059.	1.9	4
122	Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1012-1024.	1.9	4
123	Size Effect of Zwitterionic Peptide-Based Nanoscale Micelles on Cancer Therapy. ACS Applied Nano Materials, 2022, 5, 9344-9355.	2.4	4
124	Reference-compensated surface plasmon resonance biosensor for detection of foodborne pathogens. , 2001, , .		3
125	3D Interlayer Slidable Multilayer Nano-Graphene Oxide Acrylate Crosslinked Tough Hydrogel. Langmuir, 2022, 38, 8200-8210.	1.6	3
126	Development of biocompatible silicone hyrogels with high resistance to protein adsorption and bacterial adhesion. Journal of Controlled Release, 2011, 152, e224-e226.	4.8	2

SHENGFU CHEN

#	Article	IF	CITATIONS
127	Development of an Integrated High Serum Stability Zwitterionic Polypeptide-Based Nanodrug with Both Rapid Internalization and Endocellular Drug Releasing for Efficient Targeted Chemotherapy. Langmuir, 2021, 37, 14015-14025.	1.6	2
128	Zwitterionic Polymers for Targeted Drug Delivery. RSC Polymer Chemistry Series, 2013, , 227-244.	0.1	1
129	Nanoscale Frictional Properties of Pure and Mixed Alkanethiols on Au(111) by Scanning Force Microscopy. ACS Symposium Series, 2000, , 168-177.	0.5	0
130	Long-circulation zwitterionic dendrimer nanodrugs for phototherapy of tumors. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112681.	2.5	0