
Alex G Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/629720/publications.pdf Version: 2024-02-01

ALEY C. KIM

#	Article	IF	CITATIONS
1	Measurements of Ω and ♭ from 42 Highâ€Redshift Supernovae. Astrophysical Journal, 1999, 517, 565-586.	1.6	14,066
2	New Constraints on ΩM, ΩÎ, andwfrom an Independent Set of 11 Highâ€Redshift Supernovae Observed with theHubble Space Telescope. Astrophysical Journal, 2003, 598, 102-137.	1.6	1,406
3	Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophysical Journal, 2008, 686, 749-778.	1.6	1,217
4	SPECTRA AND <i>HUBBLE SPACE TELESCOPE</i> LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < <i>z</i> < 1.12 AND THE UNION2 COMPILATION. Astrophysical Journal, 2010, 716, 712-738.	1.6	1,143
5	Kâ€Corrections and Extinction Corrections for Type Ia Supernovae. Publications of the Astronomical Society of the Pacific, 2002, 114, 803-819.	1.0	263
6	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	3.0	201
7	CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT. Astrophysical Journal, 2015, 802, 20.	1.6	171
8	redMaGiC: selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1431-1450.	1.6	156
9	SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY. Astrophysical Journal, 2012, 753, 152.	1.6	152
10	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>α</i> . Astronomy and Astrophysics, 2013, 560, A66.	2.1	151
11	Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 592-610.	1.6	145
12	Effects of systematic uncertainties on the supernova determination of cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2004, 347, 909-920.	1.6	127
13	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 108.	1.6	123
14	Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1498-1518.	1.6	105
15	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	1.6	92
16	Cosmological Constraints from Multiple Probes in the Dark Energy Survey. Physical Review Letters, 2019, 122, 171301.	2.9	86
17	OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3047-3063.	1.6	75
18	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	1.6	67

Alex G Kim

#	Article	IF	CITATIONS
19	OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Monthly Notices of the Royal Astronomical Society, 2017, 472, 273-288.	1.6	65
20	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 107.	1.6	63
21	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	1.6	62
22	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	1.6	60
23	IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE. Astrophysical Journal, 2015, 815, 58.	1.6	47
24	OzDES multi-object fibre spectroscopy for the Dark Energy Survey: results and second data release. Monthly Notices of the Royal Astronomical Society, 2020, 496, 19-35.	1.6	43
25	The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4861-4876.	1.6	42
26	STANDARDIZING TYPE la SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION. Astrophysical Journal, 2013, 766, 84.	1.6	40
27	Measuring the Growth Rate of Structure with Type IA Supernovae from LSST. Astrophysical Journal, 2017, 847, 128.	1.6	37
28	SNEMO: Improved Empirical Models for Type Ia Supernovae. Astrophysical Journal, 2018, 869, 167.	1.6	37
29	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields. Astrophysical Journal, Supplement Series, 2020, 246, 16.	3.0	33
30	First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy. Astronomical Journal, 2020, 160, 267.	1.9	27
31	OzDES Reverberation Mapping Programme: the first Mg <scp>ii</scp> lags from 5 yr of monitoring. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3771-3788.	1.6	24
32	SNÂ2012dn from early to late times: 09dc-like supernovae reassessedã~ Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
33	Steve: A Hierarchical Bayesian Model for Supernova Cosmology. Astrophysical Journal, 2019, 876, 15.	1.6	19
34	The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu. Astrophysical Journal, 2017, 836, 157.	1.6	18
35	The first Hubble diagram and cosmological constraints using superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2535-2549.	1.6	18
36	A metric space for Type Ia supernova spectra. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1247-1266.	1.6	16

Alex G Kim

#	Article	IF	CITATIONS
37	Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity. Physical Review D, 2020, 101, .	1.6	16
38	Accuracy of environmental tracers and consequences for determining the Type Ia supernova magnitude step. Astronomy and Astrophysics, 2022, 657, A22.	2.1	16
39	The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates. Astrophysical Journal, 2021, 912, 71.	1.6	12
40	Lensing without borders – I. A blind comparison of the amplitude of galaxy–galaxy lensing between independent imaging surveys. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6150-6189.	1.6	12
41	The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light. Astrophysical Journal, 2021, 912, 70.	1.6	11
42	Be It Unresolved: Measuring Time Delays from Lensed Supernovae. Astrophysical Journal, 2021, 910, 65.	1.6	10
43	TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM <i>K</i> CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES. Astrophysical Journal, 2015, 800, 57.	1.6	8
44	Enabling Catalog Simulations of Transient and Variable Sources Based on LSST Cadence Strategies. Astrophysical Journal, Supplement Series, 2020, 247, 60.	3.0	5
45	The SNEMO and SUGAR Companion Data Sets. Research Notes of the AAS, 2020, 4, 63.	0.3	5
46	Out of one, many: distinguishing time delays from lensed supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1210-1217.	1.6	5
47	Optimizing a magnitude-limited spectroscopic training sample for photometric classification of supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1-18.	1.6	4
48	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H <i>1± (Corrigendum)</i> . Astronomy and Astrophysics, 2018, 612, C1.	2.1	3
49	Type Ia supernova diversity: Standardizing the candles. , 2007, , .		1
50	Characterizing the Sample Selection for Supernova Cosmology. The Open Journal of Astrophysics, 2021, 4, .	0.8	1