Robert J B Nibbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6295501/publications.pdf

Version: 2024-02-01

117625 7,267 59 34 citations h-index papers

138484 58 g-index 62 62 62 9676 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Generation of stable advective-diffusive chemokine gradients in a three-dimensional hydrogel. AIP Advances, 2022, 12, 025121.	1.3	O
2	The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells, 2021, 10, 3439.	4.1	5
3	A Comprehensive Profile of Chemokine Gene Expression in the Tissues of the Female Reproductive Tract in Mice. Immunological Investigations, 2020, 49, 264-286.	2.0	8
4	Immunological roles of intestinal mesenchymal cells. Immunology, 2020, 160, 313-324.	4.4	16
5	Can molecular stratification improve the treatment of inflammatory bowel disease?. Pharmacological Research, 2019, 148, 104442.	7.1	14
6	Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacological Research, 2019, 145, 104258.	7.1	115
7	The lîºB-protein BCL-3 controls Toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25828-25838.	7.1	10
8	A guide to chemokines and their receptors. FEBS Journal, 2018, 285, 2944-2971.	4.7	748
9	Atypical chemokine receptor 4 shapes activated B cell fate. Journal of Experimental Medicine, 2018, 215, 801-813.	8.5	18
10	Chemokine transport dynamics and emerging recognition of their role in immune function. Current Opinion in Biomedical Engineering, 2018, 5, 90-95.	3.4	9
11	The Atypical Chemokine Receptor Ackr2 Constrains NK Cell Migratory Activity and Promotes Metastasis. Journal of Immunology, 2018, 201, 2510-2519.	0.8	32
12	Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. Journal of Immunology, 2018, 201, 215-229.	0.8	31
13	$TGF\hat{I}^2$ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
14	A Novel Computational Model Predicts Key Regulators of Chemokine Gradient Formation in Lymph Nodes and Site-Specific Roles for CCL19 and ACKR4. Journal of Immunology, 2017, 199, 2291-2304.	0.8	28
15	Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Scientific Reports, 2017, 7, 2786.	3.3	31
16	Regulation of the Adaptive Immune Response by the lκB Family Protein Bcl-3. Cells, 2016, 5, 14.	4.1	56
17	Maternal Plasma DHA Levels Increase Prior to 29 Days Post-LH Surge in Women Undergoing Frozen Embryo Transfer: A Prospective, Observational Study of Human Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1745-1753.	3.6	27
18	CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016, 29, 832-845.	16.8	645

#	Article	IF	Citations
19	ACKR4 on Stromal Cells Scavenges CCL19 To Enable CCR7-Dependent Trafficking of APCs from Inflamed Skin to Lymph Nodes. Journal of Immunology, 2016, 196, 3341-3353.	0.8	58
20	CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. European Journal of Immunology, 2015, 45, 574-583.	2.9	27
21	An atypical addition to the chemokine receptor nomenclature: <scp>IUPHAR</scp> Review 15. British Journal of Pharmacology, 2015, 172, 3945-3949.	5.4	43
22	The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunology and Cell Biology, 2015, 93, 167-176.	2.3	18
23	Targeting cell migration in rheumatoid arthritis. Current Opinion in Rheumatology, 2015, 27, 204-211.	4.3	33
24	The N-terminal Region of the Atypical Chemokine Receptor ACKR2 Is a Key Determinant of Ligand Binding. Journal of Biological Chemistry, 2014, 289, 12330-12342.	3.4	12
25	Atypical Chemokine Receptor ACKR2 Mediates Chemokine Scavenging by Primary Human Trophoblasts and Can Regulate Fetal Growth, Placental Structure, and Neonatal Mortality in Mice. Journal of Immunology, 2014, 193, 5218-5228.	0.8	23
26	The chemokine receptors <scp>ACKR</scp> 2 and <scp>CCR</scp> 2 reciprocally regulate lymphatic vessel density. EMBO Journal, 2014, 33, 2564-2580.	7.8	65
27	Chemokines as Novel and Versatile Reagents for Flow Cytometry and Cell Sorting. Journal of Immunology, 2014, 192, 6120-6130.	0.8	13
28	The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology, 2014, 15, 623-630.	14.5	235
29	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	16.0	735
30	New nomenclature for atypical chemokine receptors. Nature Immunology, 2014, 15, 207-208.	14.5	176
31	Characterization of Conventional and Atypical Receptors for the Chemokine CCL2 on Mouse Leukocytes. Journal of Immunology, 2014, 193, 400-411.	0.8	33
32	Immune regulation by atypical chemokine receptors. Nature Reviews Immunology, 2013, 13, 815-829.	22.7	331
33	Cell-Autonomous Regulation of Neutrophil Migration by the D6 Chemokine Decoy Receptor. Journal of Immunology, 2013, 190, 6450-6456.	0.8	25
34	An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood, 2013, 121, 3768-3777.	1.4	72
35	CCX-CKR deficiency alters thymic stroma impairing thymocyte development and promoting autoimmunity. Blood, 2013, 121, 118-128.	1.4	36
36	Using Fluorescent Chemokine Uptake to Detect Chemokine Receptors by Fluorescent Activated Cell Sorting. Methods in Molecular Biology, 2013, 1013, 203-214.	0.9	10

#	Article	IF	Citations
37	Mast cells reside in myometrium and cervix, but are dispensable in mice for successful pregnancy and labor. Immunology and Cell Biology, 2012, 90, 321-329.	2.3	37
38	Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. Journal of Clinical Investigation, 2012, 122, 3127-3144.	8.2	311
39	Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice. Blood, 2011, 117, 5413-5424.	1.4	71
40	D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood, 2011, 118, 6220-6229.	1.4	70
41	DARC and D6: silent partners in chemokine regulation?. Immunology and Cell Biology, 2011, 89, 197-206.	2.3	42
42	Co-opting endogenous immunoglobulin for the regulation of inflammation and osteoclastogenesis in humans and mice. Arthritis and Rheumatism, 2011, 63, 3897-3907.	6.7	25
43	The odd couple: Innate-like B cells and the chemokine scavenger D6. Cell Cycle, 2011, 10, 3619-3620.	2.6	2
44	The atypical chemokine receptor CCX-CKR scavenges homeostatic chemokines in circulation and tissues and suppresses Th17 responses. Blood, 2010, 116, 4130-4140.	1.4	70
45	Chemokine Scavenger D6 Is Expressed by Trophoblasts and Aids the Survival of Mouse Embryos Transferred into Allogeneic Recipients. Journal of Immunology, 2010, 184, 3202-3212.	0.8	54
46	The Atypical Chemokine Receptor D6 Contributes to the Development of Experimental Colitis. Journal of Immunology, 2009, 182, 5032-5040.	0.8	46
47	The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nature Immunology, 2009, 10, 101-108.	14.5	301
48	Multiple Roles for the C-terminal Tail of the Chemokine Scavenger D6. Journal of Biological Chemistry, 2008, 283, 7972-7982.	3.4	61
49	Hemopoietic cell expression of the chemokine decoy receptor D6 is dynamic and regulated by GATA1. Journal of Immunology, 2008, 181, 8170.2-8181.	0.8	37
50	Hemopoietic Cell Expression of the Chemokine Decoy Receptor D6 Is Dynamic and Regulated by GATA1. Journal of Immunology, 2008, 181, 3353-3363.	0.8	69
51	The atypical chemokine receptor D6 suppresses the development of chemically induced skin tumors. Journal of Clinical Investigation, 2007, 117, 1884-1892.	8.2	139
52	The chemokine receptor CCXâ€CKR mediates effective scavenging of CCL19 <i>in vitro</i> Journal of Immunology, 2006, 36, 1904-1916.	2.9	127
53	The chemokine receptor D6 limits the inflammatory response in vivo. Nature Immunology, 2005, 6, 403-411.	14.5	279
54	The Influence of <i>CCL3L1</i> Gene-Containing Segmental Duplications on HIV-1/AIDS Susceptibility. Science, 2005, 307, 1434-1440.	12.6	1,040

ROBERT J B NIBBS

#	Article	IF	CITATIONS
55	The Chemokine Receptor D6 Constitutively Traffics to and from the Cell Surface to Internalize and Degrade Chemokines. Molecular Biology of the Cell, 2004, 15, 2492-2508.	2.1	180
56	Purification and biochemical characterization of the D6 chemokine receptor. Biochemical Journal, 2004, 379, 263-272.	3.7	69
57	Gene copy number regulates the production of the human chemokine CCL3-L1. European Journal of Immunology, 2002, 32, 3016-3026.	2.9	133
58	Characterization of mouse CCX-CKR, a receptor for the lymphocyte-attracting chemokines TECK/mCCL25, SLC/mCCL21 and MIP-3β/mCCL19: comparison to human CCX-CKR. European Journal of Immunology, 2002, 32, 1230.	2.9	90
59	C-C Chemokine Receptor 3 Antagonism by the \hat{I}^2 -Chemokine Macrophage Inflammatory Protein 4, a Property Strongly Enhanced by an Amino-Terminal Alanine-Methionine Swap. Journal of Immunology, 2000, 164, 1488-1497.	0.8	113