Michael J Pellin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6295487/publications.pdf

Version: 2024-02-01

214 papers

11,159 citations

25034 57 h-index 97 g-index

222 all docs 222 docs citations

times ranked

222

12575 citing authors

#	Article	IF	CITATIONS
1	Oxidative Dehydrogenation of Cyclohexane by Cu <i>vs</i> Pd Clusters: Selectivity Control by Specific Cluster Dynamics. ChemCatChem, 2020, 12, 1307-1315.	3.7	21
2	Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. Journal of Chemical Physics, 2020, 152, 084703.	3.0	16
3	Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO ₂ Conversion to Methanol and Hydrocarbons under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14435-14442.	6.7	19
4	Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. Journal of Chemical Physics, 2019, 151, 164201.	3.0	60
5	Presolar Silicon Carbide Grains of Types Y and Z: Their Molybdenum Isotopic Compositions and Stellar Origins. Astrophysical Journal, 2019, 881, 28.	4.5	23
6	Molybdenum Isotopes in Presolar Silicon Carbide Grains: Details of s-process Nucleosynthesis in Parent Stars and Implications for r- and p-processes. Astrophysical Journal, 2019, 877, 101.	4.5	27
7	Nanoassemblies of ultrasmall clusters with remarkable activity in carbon dioxide conversion into C1 fuels. Nanoscale, 2019, 11, 4683-4687.	5.6	8
8	Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO ₂ for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298.	17.4	75
9	Using first principles calculations to interpret XANES experiments: extracting the size-dependence of the (<i>p</i> àêŠ, <i>T</i>) phase diagram of sub-nanometer Cu clusters in an O ₂ environment. Journal of Physics Condensed Matter, 2019, 31, 144002.	1.8	6
10	New Constraints on the Abundance of ⁶⁰ Fe in the Early Solar System. Astrophysical Journal Letters, 2018, 857, L15.	8.3	40
11	Reversing Sizeâ€Dependent Trends in the Oxidation of Copper Clusters through Support Effects. European Journal of Inorganic Chemistry, 2018, 2018, 16-22.	2.0	20
12	Cover Feature: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects (Eur. J. Inorg. Chem. 1/2018). European Journal of Inorganic Chemistry, 2018, 2018, 3-3.	2.0	0
13	Bimetallic Agâ€Pt Subâ€nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts. Angewandte Chemie, 2018, 130, 1223-1227.	2.0	3
14	Water Oxidation Catalysis via Size-Selected Iridium Clusters. Journal of Physical Chemistry C, 2018, 122, 9965-9972.	3.1	20
15	Strontium and barium isotopes in presolar silicon carbide grains measured with CHILI—two types of X grains. Geochimica Et Cosmochimica Acta, 2018, 221, 109-126.	3.9	31
16	Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains. Geochimica Et Cosmochimica Acta, 2018, 221, 87-108.	3.9	27
17	Bimetallic Agâ€Pt Subâ€nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts. Angewandte Chemie - International Edition, 2018, 57, 1209-1213.	13.8	47
18	Subnanometer Substructures in Nanoassemblies Formed from Clusters under a Reactive Atmosphere Revealed Using Machine Learning. Journal of Physical Chemistry C, 2018, 122, 21686-21693.	3.1	69

#	Article	IF	CITATIONS
19	Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae. Astrophysical Journal, 2018, 855, 144.	4.5	15
20	Potassic, high-silica Hadean crust. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6353-6356.	7.1	33
21	Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae. Geochimica Et Cosmochimica Acta, 2018, 221, 127-144.	3.9	11
22	Low-Temperature Atomic Layer Deposition of CuSbS ₂ for Thin-Film Photovoltaics. ACS Applied Materials & Deposition of CuSbS ₂	8.0	52
23	Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33429-33436.	8.0	26
24	Laser Ablation of Sub-10 nm Silver Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 9552-9559.	3.1	4
25	Heavy ion linear accelerator for radiation damage studies of materials. Review of Scientific Instruments, 2017, 88, 033302.	1.3	5
26	Determining the Conduction Band-Edge Potential of Solar-Cell-Relevant Nb ₂ O ₅ Fabricated by Atomic Layer Deposition. Langmuir, 2017, 33, 9298-9306.	3.5	14
27	Size-Selective Reactivity of Subnanometer Ag ₄ and Ag ₁₆ Clusters on a TiO ₂ Surface. Journal of Physical Chemistry C, 2017, 121, 6614-6625.	3.1	21
28	J-type Carbon Stars: A Dominant Source of ¹⁴ N-rich Presolar SiC Grains of Type AB. Astrophysical Journal Letters, 2017, 844, L12.	8.3	25
29	Investigation of High-Energy Ion-Irradiated MA957 Using Synchrotron Radiation under In-Situ Tension. Materials, 2016, 9, 15.	2.9	9
30	Engendering Long-Term Air and Light Stability of a TiO ₂ -Supported Porphyrinic Dye via Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34863-34869.	8.0	3
31	High-mass heterogeneous cluster formation by ion bombardment of the ternary alloy Au7Cu5Al4. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	0
32	Water Oxidation by Sizeâ€Selected Co ₂₇ Clusters Supported on Fe ₂ O ₃ . ChemSusChem, 2016, 9, 3005-3011.	6.8	14
33	Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19853-19859.	8.0	19
34	In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS. Catalysis Science and Technology, 2016, 6, 6778-6783.	4.1	16
35	Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co _{1–<i>x</i>} Pt _{<i>x</i>} Clusters under H ₂ and CO + H ₂ Atmospheres. Journal of Physical Chemistry C, 2016, 120, 21496-21504.	3.1	11
36	CHILI $\hat{a}\in$ " the Chicago Instrument for Laser Ionization $\hat{a}\in$ " a new tool for isotope measurements in cosmochemistry. International Journal of Mass Spectrometry, 2016, 407, 1-15.	1.5	68

#	Article	IF	Citations
37	Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications. ACS Applied Materials & Amp; Interfaces, 2016, 8, 2774-2780.	8.0	57
38	Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction. Journal of Nuclear Materials, 2016, 471, 272-279.	2.7	8
39	MeV per nucleon ion irradiation of nuclear materials with high energy synchrotron X-ray characterization. Journal of Nuclear Materials, 2016, 471, 266-271.	2.7	12
40	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	3.1	45
41	Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties. Review of Scientific Instruments, 2015, 86, 095111.	1.3	5
42	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28223-28230.	8.0	145
43	CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON. Astrophysical Journal, 2015, 803, 12.	4.5	65
44	Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications. Applied Physics Letters, 2015, 106, .	3.3	35
45	Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4- <i>tert</i> -Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. Journal of Physical Chemistry B, 2015, 119, 7162-7169.	2.6	15
46	Atomâ€probe analyses of nanodiamonds from Allende. Meteoritics and Planetary Science, 2014, 49, 453-467.	1.6	62
47	Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition. Applied Physics Letters, 2014, 104, .	3.3	9
48	BARIUM ISOTOPIC COMPOSITION OF MAINSTREAM SILICON CARBIDES FROM MURCHISON: CONSTRAINTS FOR <i>>></i> >-PROCESS NUCLEOSYNTHESIS IN ASYMPTOTIC GIANT BRANCH STARS. Astrophysical Journal, 2014, 786, 66.	4.5	67
49	Depth profile of oxide volume fractions of Zircaloy-2 in high-temperature steam: An in-situ synchrotron radiation study. Journal of Nuclear Materials, 2014, 454, 192-199.	2.7	2
50	THE ¹³ C-POCKET STRUCTURE IN AGB MODELS: CONSTRAINTS FROM ZIRCONIUM ISOTOPE ABUNDANCES IN SINGLE MAINSTREAM SIC GRAINS. Astrophysical Journal, 2014, 788, 163.	4.5	40
51	Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12290-12294.	8.0	28
52	Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11891-11898.	8.0	59
53	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	17
54	Atom-Probe Tomography of Meteoritic Nanodiamonds Microscopy and Microanalysis, 2014, 20, 1676-1677.	0.4	1

#	Article	IF	Citations
55	RIMS analysis of ion induced fragmentation of molecules sputtered from an enriched U3O8 matrix. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296, 407-412.	1.5	7
56	Hematite-based Photo-oxidation of Water Using Transparent Distributed Current Collectors. ACS Applied Materials & Distributed Current Collecto	8.0	66
57	Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2013, 4, 3527-3533.	4.6	48
58	Low temperature atomic layer deposition of highly photoactive hematite using iron(iii) chloride and water. Journal of Materials Chemistry A, 2013, 1, 11607.	10.3	38
59	Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials. Chemical Science, 2013, 4, 1509.	7.4	142
60	Interfaces and Composition Profiles in Metal–Sulfide Nanolayers Synthesized by Atomic Layer Deposition. Chemistry of Materials, 2013, 25, 313-319.	6.7	37
61	High sensitivity sputter neutral mass spectrometry – Sputtering of neutral mixed clusters from gold–aluminum alloys. Nuclear Instruments & Methods in Physics Research B, 2013, 317, 115-120.	1.4	4
62	Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite. ACS Nano, 2013, 7, 2396-2405.	14.6	243
63	Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO ₂ and on Redox-Shuttle-Derived Dark Currents. Langmuir, 2013, 29, 806-814.	3.5	34
64	Size-Dependent Subnanometer Pd Cluster (Pd ₄ , Pd ₆ , and Pd ₁₇) Water Oxidation Electrocatalysis. ACS Nano, 2013, 7, 5808-5817.	14.6	137
65	Templating Sub-10 nm Atomic Layer Deposited Oxide Nanostructures on Graphene via One-Dimensional Organic Self-Assembled Monolayers. Nano Letters, 2013, 13, 5763-5770.	9.1	37
66	Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. Energy and Environmental Science, 2013, 6, 1868.	30.8	91
67	Heteroepitaxy of group IV-VI nitrides by atomic layer deposition. Applied Physics Letters, 2013, 103, .	3.3	15
68	Thermal conductivity of Er+3:Y2O3 films grown by atomic layer deposition. Applied Physics Letters, 2013, 103, 193109.	3.3	8
69	Combining Atom-Probe Tomography and Focused-Ion Beam Microscopy to Study Individual Presolar Meteoritic Nanodiamond Particles. Microscopy and Microanalysis, 2013, 19, 974-975.	0.4	13
70	Surface impedance of superconductors with magnetic impurities. Physical Review B, 2012, 86, .	3.2	16
71	High aspect ratio nanoneedle probes with an integrated electrode at the tip apex. Review of Scientific Instruments, 2012, 83, 113704.	1.3	20
72	Fast Transporting ZnO–TiO ₂ Coaxial Photoanodes for Dye-Sensitized Solar Cells Based on ALD-Modified SiO ₂ Aerogel Frameworks. ACS Nano, 2012, 6, 6185-6196.	14.6	76

#	Article	IF	CITATIONS
73	Energy Levels, Electronic Properties, and Rectification in Ultrathin p-NiO Films Synthesized by Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 16830-16840.	3.1	88
74	Highâ€resolution secondary ion mass spectrometry depth profiling of nanolayers. Rapid Communications in Mass Spectrometry, 2012, 26, 2224-2230.	1.5	14
75	Atomic Layer Deposition of the Quaternary Chalcogenide Cu ₂ ZnSnS ₄ . Chemistry of Materials, 2012, 24, 3188-3196.	6.7	75
76	Atomic Layer Deposition of Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Using Ferrocene and Ozone. Journal of Physical Chemistry C, 2011, 115, 4333-4339.	3.1	118
77	Atomic Layer Deposition of Amorphous Niobium Carbide-Based Thin Film Superconductors. Journal of Physical Chemistry C, 2011, 115, 25063-25071.	3.1	35
78	Atomic Layer Deposition and Superconducting Properties of NbSi Films. Journal of Physical Chemistry C, 2011, 115, 9477-9485.	3.1	17
79	Ion Exchange in Ultrathin Films of Cu ₂ S and ZnS under Atomic Layer Deposition Conditions. Chemistry of Materials, 2011, 23, 4411-4413.	6.7	49
80	Seeding Atomic Layer Deposition of High- <i>k</i> Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers. ACS Nano, 2011, 5, 5223-5232.	14.6	167
81	Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions. Advanced Materials, 2011, 23, 2181-2184.	21.0	34
82	Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: A joint experimental and theoretical study. Catalysis Today, 2011, 160, 116-130.	4.4	115
83	Development of ultrananocrystalline diamond (UNCD) coatings for multipurpose mechanical pump seals. Wear, 2011, 270, 325-331.	3.1	41
84	(Invited) Atomic Layer Deposition of Superconductors. ECS Transactions, 2011, 41, 237-245.	0.5	16
85	Ion Microscopy with Resonant Ionization Mass Spectrometry: Time-of-Flight Depth Profiling with Improved Isotopic Precision. European Journal of Mass Spectrometry, 2010, 16, 373-377.	1.0	2
86	Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths. Journal of Catalysis, 2010, 269, 421-431.	6.2	92
87	Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition. Advanced Functional Materials, 2010, 20, 3099-3105.	14.9	58
88	Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition. Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
89	Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition. Electrochemistry Communications, 2010, 12, 1543-1546.	4.7	22
90	Atomic layer deposition of nanoporous biomaterials. Materials Today, 2010, 13, 60-64.	14.2	33

#	Article	IF	Citations
91	Dye-Sensitized Solar Cells: Driving-Force Effects on Electron Recombination Dynamics with Cobalt-Based Shuttles. Langmuir, 2010, 26, 9082-9087.	3.5	108
92	Oxidative Decomposition of Methanol on Subnanometer Palladium Clusters: The Effect of Catalyst Size and Support Composition. Journal of Physical Chemistry C, 2010, 114, 10342-10348.	3.1	76
93	Integrated Ultramicroelectrodeâ^'Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy. Analytical Chemistry, 2010, 82, 1270-1276.	6.5	157
94	Atomic Layer Deposition of Aluminum Oxide in Mesoporous Silica Gel. Journal of Physical Chemistry C, 2010, 114, 17286-17292.	3.1	63
95	Atomic layer deposition-based functionalization of materials for medical and environmental health applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2033-2064.	3.4	35
96	Tunneling Study of SRF Cavity-Grade Niobium. IEEE Transactions on Applied Superconductivity, 2009, 19, 1404-1408.	1.7	11
97	Performance and Characterization of ALD Vanadium Oxide Catalytic Nanoliths. ECS Transactions, 2009, 25, 49-55.	0.5	1
98	Selective Propene Epoxidation on Immobilized Au _{6–10} Clusters: The Effect of Hydrogen and Water on Activity and Selectivity. Angewandte Chemie - International Edition, 2009, 48, 1467-1471.	13.8	246
99	Formation of neutral clusters during sputtering of gold. Surface Science, 2009, 603, 819-825.	1.9	10
100	Sputtering of clusters from copper–gold alloys. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2757-2760.	1.4	5
101	Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: Medical applications. Jom, 2009, 61, 12-16.	1.9	38
102	Subnanometre platinum clusters as highly activeÂand selective catalysts for the oxidative dehydrogenation of propane. Nature Materials, 2009, 8, 213-216.	27.5	725
103	Resonance ionization mass spectrometry for precise measurements of isotope ratios. International Journal of Mass Spectrometry, 2009, 288, 36-43.	1.5	47
104	Catalytic nanoliths. Chemical Engineering Science, 2009, 64, 560-567.	3.8	37
105	Sputtering of neutral clusters from silver–gold alloys. Applied Surface Science, 2009, 256, 991-994.	6.1	3
106	Atomic layer deposition of Cu2S for future application in photovoltaics. Applied Physics Letters, 2009, 94, .	3.3	77
107	Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. Journal of Physical Chemistry A, 2009, 113, 4015-4021.	2.5	255
108	Laser-induced desorption of organic molecules from front- and back-irradiated metal foils., 2009,,.		3

#	Article	IF	Citations
109	Nanoporous materials for biomedical devices. Jom, 2008, 60, 26-32.	1.9	58
110	New Architectures for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2008, 14, 4458-4467.	3.3	253
111	Aerogel Templated ZnO Dye‧ensitized Solar Cells. Advanced Materials, 2008, 20, 1560-1564.	21.0	138
112	Efficient multiple beam ion optics for quantitative surface analysis: from simulations to a fully operational instrument. Physics Procedia, 2008, 1, 379-389.	1.2	11
113	Conformal ZnO coatings on high surface area silica gel using atomic layer deposition. Thin Solid Films, 2008, 516, 6158-6166.	1.8	92
114	Investigation of radiation enhanced diffusion of magnesium in substrates flown on the NASA genesis mission. Applied Surface Science, 2008, 255, 1455-1457.	6.1	9
115	Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors. Journal of Physical Chemistry C, 2008, 112, 1938-1945.	3.1	101
116	Atomic Layer Deposition of TiO ₂ on Aerogel Templates: New Photoanodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 10303-10307.	3.1	122
117	Radial Electron Collection in Dye-Sensitized Solar Cells. Nano Letters, 2008, 8, 2862-2866.	9.1	130
118	Atomic layer deposition of tin oxide films using tetrakis(dimethylamino) tin. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 244-252.	2.1	153
119	Anodic Aluminum Oxide Templated Channel Electrodes via Atomic Layer Deposition. ECS Transactions, 2007, 6, 389-394.	0.5	0
120	Spatially Controlled Atomic Layer Deposition in Porous Membranes. ECS Transactions, 2007, 11, 177-184.	0.5	3
121	Laser-Driven Acoustic Desorption of Organic Molecules from Back-Irradiated Solid Foils. Analytical Chemistry, 2007, 79, 8232-8241.	6.5	51
122	Detection of In Situ Derivatized Peptides in Microbial Biofilms by Laser Desorption 7.87 eV Postionizaton Mass Spectrometry. Analytical Chemistry, 2007, 79, 508-514.	6.5	30
123	ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano Letters, 2007, 7, 2183-2187.	9.1	730
124	Mass spectrometry on the nanoscale with ion sputtering based techniques: What is feasible. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 508-511.	1.4	23
125	Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates. Chemistry of Materials, 2006, 18, 6106-6108.	6.7	44
126	Vacuum Ultraviolet Postionization of Aromatic Groups Covalently Bound to Peptides. Analytical Chemistry, 2006, 78, 5876-5883.	6.5	24

#	Article	IF	Citations
127	Imaging of Atomic Layer Deposited (ALD) Tungsten Monolayers on α-TiO2(110) by X-ray Standing Wave Fourier Inversion. Journal of Physical Chemistry B, 2006, 110, 12616-12620.	2.6	26
128	Atomic Layer Deposition of In2O3 Using Cyclopentadienyl Indium:  A New Synthetic Route to Transparent Conducting Oxide Films. Chemistry of Materials, 2006, 18, 3571-3578.	6.7	119
129	Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials. Journal of Nanomaterials, 2006, 2006, 1-5.	2.7	82
130	Multi-element isotopic analysis of single presolar SiC grains. New Astronomy Reviews, 2006, 50, 587-590.	12.8	17
131	Sputtering of clusters from nickel–aluminium. Applied Surface Science, 2006, 252, 6426-6428.	6.1	8
132	7.87eV postionization of peptides containing tryptophan or derivatized with fluorescein. Applied Surface Science, 2006, 252, 6723-6726.	6.1	17
133	Etching of hexagonal SiC surfaces in chlorine-containing gas media at ambient pressure. Surface Science, 2006, 600, 2242-2251.	1.9	17
134	Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films, 2006, 515, 1664-1673.	1.8	153
135	Reactivity of supported platinum nanoclusters studied by in situ GISAXS: clusters stability under hydrogen. Topics in Catalysis, 2006, 39, 145-149.	2.8	7 3
136	Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Topics in Catalysis, 2006, 39, 161-166.	2.8	70
137	Transparent Conducting Oxides at High Aspect Ratios by ALD. ECS Transactions, 2006, 3, 243-247.	0.5	2
138	Nucleation and Growth of Noble Metals on Oxide Surfaces Using Atomic Layer Deposition. ECS Transactions, 2006, 3, 271-278.	0.5	55
139	Laser post-ionization secondary neutral mass spectrometry for ultra-trace analysis of samples from space return missions. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 356-360.	1.4	27
140	Photocatalytic degradation of methylene blue on nanocrystalline TiO2: Surface mass spectrometry of reaction intermediates. International Journal of Mass Spectrometry, 2005, 245, 61-67.	1.5	123
141	Mesoporous catalytic membranes: Synthetic control of pore size and wall composition. Catalysis Letters, 2005, 102, 127-130.	2.6	94
142	Effect of Atomic Layer Deposition Coatings on the Surface Structure of Anodic Aluminum Oxide Membranes. Journal of Physical Chemistry B, 2005, 109, 14059-14063.	2.6	102
143	Extinct Technetium in Silicon Carbide Stardust Grains: Implications for Stellar Nucleosynthesis. Science, 2004, 303, 649-652.	12.6	77
144	A new time-of-flight instrument for quantitative surface analysis. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 473-479.	1.4	25

#	Article	IF	CITATIONS
145	Calculating time-of-flight spectra of post-ionized sputtered neutrals. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 1051-1057.	1.4	9
146	Computer simulation of time-of-flight mass spectrometers: calculations of mass spectra and spatial distributions of ions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 519, 345-352.	1.6	10
147	A virtual reality instrument: near-future perspective of computer simulations of ion optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 519, 363-372.	1.6	10
148	Coating of SiC surface by thin carbon films using the carbide-derived carbon process. Thin Solid Films, 2004, 469-470, 135-141.	1.8	13
149	lon optics of a new time-of-flight mass spectrometer for quantitative surface analysis. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 519, 353-362.	1.6	24
150	A new horizon in secondary neutral mass spectrometry: post-ionization using a VUV free electron laser. Applied Surface Science, 2004, 231-232, 962-966.	6.1	11
151	Derivatization of Surface-Bound Peptides for Mass Spectrometric Detection via Threshold Single Photon Ionization. Analytical Chemistry, 2004, 76, 4267-4270.	6.5	17
152	Estimation of useful yield in surface analysis using single photon ionisation. Applied Surface Science, 2003, 203-204, 244-247.	6.1	21
153	Analyzing individual presolar grains with CHARISMA. Geochimica Et Cosmochimica Acta, 2003, 67, 3215-3225.	3.9	75
154	Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite. Geochimica Et Cosmochimica Acta, 2003, 67, 3201-3214.	3.9	73
155	Using a TOF mass spectrometer for studies of laser interaction with 3-nm diameter gold nanoparticles embedded in silica., 2003, 4932, 334.		0
156	Isotopic Compositions of Strontium, Zirconium, Molybdenum, and Barium in Single Presolar SiC Grains and Asymptotic Giant Branch Stars. Astrophysical Journal, 2003, 593, 486-508.	4.5	182
157	Engineered defects for investigation of laser-induced damage of fused silica at 355 nm., 2002, , .		22
158	Single photon ionisation of self assembled monolayers. Nuclear Instruments & Methods in Physics Research B, 2002, 190, 203-206.	1.4	4
159	Efficiency of concrete removal with a pulsed Nd:YAG laser. Journal of Laser Applications, 2000, 12, 200-204.	1.7	12
160	Pulsed laser ablation of cement and concrete. Journal of Laser Applications, 1999, 11, 284-287.	1.7	20
161	Effects of oxygen dosing on Ca cluster yields and energy distributions. Surface Science, 1999, 432, 199-210.	1.9	5
162	Two-Laser Mass Spectrometry of Thiolate, Disulfide, and Sulfide Self-Assembled Monolayers. Langmuir, 1998, 14, 1664-1673.	3.5	89

#	Article	IF	CITATIONS
163	Energy and yield distributions of calcium atoms and clusters undergoing 4 keV Ar+-ion bombardment. Surface Science, 1998, 398, 211-220.	1.9	11
164	Molybdenum Isotopic Composition of Individual Presolar Silicon Carbide Grains from the Murchison Meteorite. Geochimica Et Cosmochimica Acta, 1998, 62, 1093-1104.	3.9	114
165	Zirconium and Molybdenum in Individual Circumstellar Graphite Grains: New Isotopic Data on the Nucleosynthesis of Heavy Elements. Astrophysical Journal, 1998, 504, 492-499.	4.5	70
166	<title>Trace isotopic analysis of micron-sized grains: Mo and Zr analysis of stardust (SiC and graphite) Tj ETQq0</td><td>0 0 rgBT /0</td><td>Ovgrlock 10 T</td></tr><tr><td>167</td><td>Surface Mass Spectrometry of Biotinylated Self-Assembled Monolayers. Analytical Chemistry, 1997, 69, 4331-4338.</td><td>6.5</td><td>27</td></tr><tr><td>168</td><td>s-Process Zirconium in Presolar Silicon Carbide Grains. Science, 1997, 277, 1281-1284.</td><td>12.6</td><td>133</td></tr><tr><td>169</td><td>Sputtering Products of Sodium Sulfate: Implications for Io's Surface and for Sodium-Bearing Molecules in the Io Torus. Icarus, 1997, 128, 386-397.</td><td>2.5</td><td>51</td></tr><tr><td>170</td><td>Projection Photolithography Utilizing a Schwarzschild Microscope and Self-Assembled Alkanethiol Monolayers as Simple Photoresistsâ€. Langmuir, 1996, 12, 2121-2124.</td><td>3.5</td><td>44</td></tr><tr><td>171</td><td>Surface Analysis by SNMS: Femtosecond Laser Postionization of Sputtered and Laser Desorbed Atoms. Surface and Interface Analysis, 1996, 24, 363-370.</td><td>1.8</td><td>31</td></tr><tr><td>172</td><td>Sputtering of tin and gallium-tin clusters. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 361-365.</td><td>1.4</td><td>1</td></tr><tr><td>173</td><td>Sputtering of Group-Illa elements. Properties of the metal cluster formation mechanism. Surface Science, 1995, 322, 361-372.</td><td>1.9</td><td>15</td></tr><tr><td>174</td><td>Abundance and Depth of Origin of Neutral and Ionic Clusters Sputtered from a Liquid Gallium-Indium Eutectic Alloy. Physical Review Letters, 1994, 73, 1719-1722.</td><td>7.8</td><td>20</td></tr><tr><td>175</td><td>Kinetic energy distributions of sputtered indium atoms and clusters. Nuclear Instruments & Methods in Physics Research B, 1994, 94, 197-202.</td><td>1.4</td><td>18</td></tr><tr><td>176</td><td>Neutral copper cluster sputtering yields: Ne+ Ar+ and Xe+ bombardment. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 518-522.</td><td>1.4</td><td>35</td></tr><tr><td>177</td><td>Yields of sputtered metal clusters: the influence of surface structure. Surface Science, 1994, 304, L439-L444.</td><td>1.9</td><td>10</td></tr><tr><td>178</td><td>Kinetic energy distributions of sputtered neutral aluminum clusters: A1-A16. Nuclear Instruments & Methods in Physics Research B, 1993, 82, 329-336.</td><td>1.4</td><td>56</td></tr><tr><td>179</td><td>Molecular analysis by ionization of laser-desorbed neutral species. Applied Optics, 1993, 32, 857.</td><td>2.1</td><td>23</td></tr><tr><td>180</td><td>New findings on the sputtering of neutral metal clusters. Surface Science, 1993, 298, 161-172.</td><td>1.9</td><td>71</td></tr></tbody></table></title>		

#	Article	IF	Citations
181	Direct detection of a metal desorption channel: electron-stimulated desorption of aluminum from methanol-dosed Al(111). Surface Science, 1993, 282, 97-112.	1.9	2
182	FULLERENES AND GIANT FULLERENES: SYNTHESIS, SEPARATION, AND MASS SPECTROMETRIC CHARACTERIZATION. , 1993, , 29-44.		2
183	Mass spectrometric analysis of rubber vulcanizates by laser desorption/laser ionization. Analytical Chemistry, 1992, 64, 2797-2803.	6.5	20
184	Characterization of fullerenes by laser-based mass spectrometry. Vacuum, 1992, 43, 381-385.	3.5	22
185	Fullerenes and giant fullerenes: Synthesis, separation, and mass spectrometric characterization. Carbon, 1992, 30, 1167-1182.	10.3	63
186	Electron-stimulated desorption of neutrals from methanol-dosed Al(111) - velocity distributions and adsorbate decomposition determined by nonresonant laser ionization. Surface Science, 1991, 241, 73-90.	1.9	20
187	Yields and kinetic energy distributions of sputtered neutral copper clusters. Surface Science, 1991, 259, 275-287.	1.9	74
188	First easily reproduced solution-phase synthesis and confirmation of superconductivity in the fullerene KxC60 (Tc = $18.0 .+0.1 K$). Inorganic Chemistry, 1991, 30, 2838-2839.	4.0	39
189	Low primary ion fluence dependence of single crystal sputtering: a molecular dynamics study. Nuclear Instruments & Methods in Physics Research B, 1991, 58, 429-437.	1.4	21
190	Selectivity, specificity and sensitivity in the photoionization of sputtered species. Nuclear Instruments & Methods in Physics Research B, 1991, 58, 505-511.	1.4	11
191	High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266. Journal of the American Chemical Society, 1991, 113, 7499-7503.	13.7	192
192	Triplet states of fullerenes C60 and C70. Electron paramagnetic resonance spectra, photophysics, and electronic structures. Journal of the American Chemical Society, 1991, 113, 2774-2776.	13.7	312
193	Velocity distributions and photodissociation of neutral C60and C70clusters. Journal of Applied Physics, 1991, 70, 6647-6652.	2.5	38
194	Spectrometric Characterization of Purified C ₆₀ and C ₇₀ . Materials Research Society Symposia Proceedings, 1990, 206, 679.	0.1	4
195	Isotope shifts of Zn neutral atoms measured by two-photon Doppler-free laser-induced fluorescence spectroscopy. Vacuum, 1990, 41, 204-206.	3.5	0
196	Insitu measurement of osmium concentrations in iron meteorites by resonance ionization of sputtered atoms. Geochimica Et Cosmochimica Acta, 1990, 54, 875-881.	3.9	16
197	Laser Fluorescence Spectroscopy of Zinc Neutrals Originating from Laser-Irradiated and Ion-Bombarded Zinc Sulfide and Zinc Surfaces. , 1988, , 227-236.		0
198	Laser-based secondary neutral mass spectroscopy: Useful yield and sensitivity. Nuclear Instruments & Methods in Physics Research B, 1987, 27, 119-129.	1.4	38

#	Article	IF	CITATIONS
199	A second harmonic generation study of the iron electrode surface using a picosecond laser. Surface Science, 1986, 176, 377-396.	1.9	18
200	Sensitive, low damage surface analysis using resonance ionization of sputtered atoms. Nuclear Instruments & Methods in Physics Research B, 1986, 18, 445-451.	1.4	3
201	Trace surface analysis: 30 ppb analysis with removal of less than a monolayer. Fe and Ti impurities in the first atomic layer of Si wafers. Nuclear Instruments & Methods in Physics Research B, 1986, 13, 653-657.	1.4	26
202	Oxygen underlayer formation on titanium by "static mode―laser fluorescence and auger spectroscopy. Surface Science, 1985, 151, 477-502.	1.9	22
203	Endoexcimer Laser Intraocular Ablative Photodecomposition. American Journal of Ophthalmology, 1985, 99, 483-484.	3.3	38
204	Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces. Nuclear Instruments & Methods in Physics Research, 1983, 218, 771-776.	0.9	20
205	X-ray absorption near edge structure in solid Kr and KrF2. Solid State Communications, 1983, 46, 803-806.	1.9	28
206	Oxygen and titanium sputtering yields as determined by laser fluorescence and auger electron spectroscopy for monolayer oxygen coverage of polycrystalline Ti. Journal of Nuclear Materials, 1982, 111-112, 738-743.	2.7	22
207	Velocity distribution of sputtered Zr atoms as determined by laser induced fluorescence spectroscopy. Surface Science, 1981, 110, 151-178.	1.9	40
208	Velocity distribution of sputtered U atoms as determined by laser induced fluorescence spectroscopy. Nuclear Instruments & Methods, 1981, 182-183, 167-178.	1.2	16
209	Laser fluorescence spectroscopy of sputtered uranium atoms. Nuclear Instruments & Methods, 1980, 170, 295-302.	1.2	40
210	Picosecond photophysics of covalently linked pyrochlorophyllide a dimer. Unique kinetics within the singlet manifold. Journal of the American Chemical Society, 1980, 102, 1868-1873.	13.7	30
211	In vitro duplication of the primary light-induced charge separation in purple photosynthetic bacteria. Nature, 1979, 278, 54-55.	27.8	34
212	Primary photochemistry of the reaction center of photosystem I. FEBS Letters, 1979, 100, 1-4.	2.8	93
213	Modulation of the Primary Electron Transfer Rate in Photosynthetic Reaction Centers by Reduction of a Secondary Acceptor. Biophysical Journal, 1978, 24, 361-367.	0.5	18
214	Resonanceâ€enhanced infrared fourâ€wave mixing by infraredâ€active molecules. Applied Physics Letters, 1976, 29, 304-307.	3.3	6