Kenneth L Rock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6295141/publications.pdf

Version: 2024-02-01

48 papers 14,466 citations

94433 37 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

16244 citing authors

#	Article	IF	CITATIONS
1	Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 2021, 12, 636568.	4.8	394
2	Immune Sensing of Cell Death through Recognition of Histone Sequences by C-Type Lectin-Receptor-2d Causes Inflammation and Tissue Injury. Immunity, 2020, 52, 123-135.e6.	14.3	49
3	The <scp>GTP</scp> ase Rab39a promotes phagosome maturation into <scp>MHC</scp> â€lantigenâ€presenting compartments. EMBO Journal, 2020, 39, e102020.	7.8	28
4	How a tailor achieves the perfect fit. Journal of Biological Chemistry, 2020, 295, 7211-7212.	3.4	1
5	Cross-presentation of exogenous antigens on MHC I molecules. Current Opinion in Immunology, 2020, 64, 1-8.	5. 5	75
6	Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression. Journal of Immunology, 2019, 203, 1999-2010.	0.8	63
7	Frontline Science: Multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL- $1\hat{l}^2$ activation. Journal of Leukocyte Biology, 2017, 102, 7-17.	3.3	53
8	The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annual Review of Immunology, 2017, 35, 149-176.	21.8	228
9	The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi. PLoS Pathogens, 2016, 12, e1005593.	4.7	33
10	Present Yourself! By MHC Class I and MHC Class II Molecules. Trends in Immunology, 2016, 37, 724-737.	6.8	566
11	Specialized proteasome subunits have an essential role in the thymic selection of CD8+ T cells. Nature Immunology, 2016, 17, 938-945.	14.5	46
12	Multiple Cathepsins Promote Proâ \in "IL-1β Synthesis and NLRP3-Mediated IL-1β Activation. Journal of Immunology, 2015, 195, 1685-1697.	0.8	208
13	The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung. European Journal of Pharmacology, 2015, 746, 174-179.	3 . 5	35
14	Evaluation of the Contribution of Multiple DAMPs and DAMP Receptors in Cell Death-Induced Sterile Inflammatory Responses. PLoS ONE, 2014, 9, e104741.	2.5	56
15	Re-examining class-I presentation and the DRiP hypothesis. Trends in Immunology, 2014, 35, 144-152.	6.8	99
16	Uric acid as a danger signal in gout and its comorbidities. Nature Reviews Rheumatology, 2013, 9, 13-23.	8.0	361
17	Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nature Immunology, 2012, 13, 129-135.	14.5	222
18	Innate and adaptive immune responses to cell death. Immunological Reviews, 2011, 243, 191-205.	6.0	191

#	Article	IF	CITATIONS
19	Proteases in MHC Class I Presentation and Cross-Presentation. Journal of Immunology, 2010, 184, 9-15.	0.8	95
20	The Sterile Inflammatory Response. Annual Review of Immunology, 2010, 28, 321-342.	21.8	703
21	Pathobiology of Inflammation to Cell Death. Biology of Blood and Marrow Transplantation, 2009, 15, 137-138.	2.0	7
22	Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 2008, 9, 847-856.	14.5	2,568
23	The Inflammatory Response to Cell Death. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 99-126.	22.4	752
24	Analysis of the Role of Bleomycin Hydrolase in Antigen Presentation and the Generation of CD8 T Cell Responses. Journal of Immunology, 2007, 178, 6923-6930.	0.8	36
25	Exiting the Outside World for Cross-Presentation. Immunity, 2006, 25, 523-525.	14.3	35
26	Tripeptidyl Peptidase II Is the Major Peptidase Needed to Trim Long Antigenic Precursors, but Is Not Required for Most MHC Class I Antigen Presentation. Journal of Immunology, 2006, 177, 1434-1443.	0.8	84
27	Crossâ€presentation: underlying mechanisms and role in immune surveillance. Immunological Reviews, 2005, 207, 166-183.	6.0	383
28	Natural endogenous adjuvants. Seminars in Immunopathology, 2005, 26, 231-246.	4.0	132
29	Cellular protein is the source of cross-priming antigen <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3035-3040.	7.1	167
30	Important Role of Cathepsin S in Generating Peptides for TAP-Independent MHC Class I Crosspresentation In Vivo. Immunity, 2004, 21, 155-165.	14.3	332
31	Protein degradation and the generation of MHC class I-presented peptides. Advances in Immunology, 2002, 80, 1-70.	2.2	300
32	The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nature Immunology, 2002, 3, 1177-1184.	14.5	448
33	Anti-Peptide Antibody Blocks Peptide Binding to MHC Class I Molecules in the Endoplasmic Reticulum. Journal of Immunology, 2001, 166, 3952-3956.	0.8	16
34	Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature, 1999, 398, 77-80.	27.8	535
35	Proteolysis and class I major histocompatibility complex antigen presentation. Immunological Reviews, 1999, 172, 49-66.	6.0	208
36	DEGRADATION OF CELL PROTEINS AND THE GENERATION OF MHC CLASS I-PRESENTED PEPTIDES. Annual Review of Immunology, 1999, 17, 739-779.	21.8	863

3

#	Article	IF	CITATIONS
37	Class II antigen processing defects in twoH2 dmouse cell lines are caused by point mutations in theH2-DMagene. European Journal of Immunology, 1999, 29, 905-911.	2.9	11
38	Gamma-interferon causes a selective induction of the lysosomal proteases, cathepsins B and L, in macrophages. FEBS Letters, 1995 , 363 , $85-89$.	2.8	74
39	Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 1994, 78, 761-771.	28.9	2,417
40	A role for the ubiquitin-dependent proteolytic pathway in MHC class l-restricted antigen presentation. Nature, 1993, 363, 552-554.	27.8	333
41	\hat{l}^3 -Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 1993, 365, 264-267.	27.8	589
42	Internalization of glycosylâ€phosphatidylinositol (GPI)â€anchored lymphocyte proteins II. GPIâ€anchored and transmembrane molecules internalize through distinct pathways. European Journal of Immunology, 1992, 22, 15-21.	2.9	55
43	Processing and presentation of ovalbumin in mice genetically selected for antibody response. European Journal of Immunology, 1992, 22, 2165-2168.	2.9	5
44	Dissociation of \hat{I}^2 -microglobulin leads to the accumulation of a substantial pool of inactive class I MHC heavy chains on the cell surface. Cell, 1991, 65, 611-620.	28.9	136
45	Presentation of Exogenous Antigen with Class I Major Histocompatibility Complex Molecules. Science, 1990, 249, 918-921.	12.6	313
46	The LY-6 Locus: A Multigene Family Encoding Phosphatidylinositol-Anchored Membrane Proteins Concerned with T-Cell Activation. Immunological Reviews, 1989, 111, 195-224.	6.0	92
47	Antigen presentation by hapten-specific B lymphocytes III. Analysis of the immunoglobulin-dependent pathway of antigen presentation to interleukin 1-dependent T lymphocytes. European Journal of Immunology, 1986, 16, 1407-1412.	2.9	18
48	MHC-Restricted T Cell Activation: Analysis with T Cell Hybridomas. Immunological Reviews, 1983, 76, 29-58.	6.0	51