
Stanley Heinze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6293239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vector navigation in walking bumblebees. Current Biology, 2022, 32, 2871-2883.e4.	3.9	11
2	Polarization Vision. , 2022, , 2812-2838.		0
3	Why flies look to the skies. ELife, 2021, 10, .	6.0	1
4	A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. ELife, 2021, 10, .	6.0	21
5	A projectome of the bumblebee central complex. ELife, 2021, 10, .	6.0	36
6	Fly navigation: Yet another ring. Current Biology, 2021, 31, R1381-R1383.	3.9	0
7	Mapping the fly's â€~brain in the brain'. ELife, 2021, 10, .	6.0	3
8	Implementing an Insect Brain Computational Circuit Using Ill–V Nanowire Components in a Single Shared Waveguide Optical Network. ACS Photonics, 2020, 7, 2787-2798.	6.6	5
9	Cover Image, Volume 528, Issue 11. Journal of Comparative Neurology, 2020, 528, C4.	1.6	0
10	Optoelectronic III-V nanowire implementation of a neural network in a shared waveguide. , 2020, , .		0
11	Visual Navigation: Ants Lose Track without Mushroom Bodies. Current Biology, 2020, 30, R984-R986.	3.9	6
12	A Novel Major Output Target for Pheromone-Sensitive Projection Neurons in Male Moths. Frontiers in Cellular Neuroscience, 2020, 14, 147.	3.7	9
13	The brain of a nocturnal migratory insect, the Australian Bogong moth. Journal of Comparative Neurology, 2020, 528, 1942-1963.	1.6	31
14	Three-Dimensional Atlases of Insect Brains. Neuromethods, 2020, , 73-124.	0.3	7
15	The head direction circuit of two insect species. ELife, 2020, 9, .	6.0	50
16	Stanley Heinze. Current Biology, 2019, 29, R268-R270.	3.9	1
17	The insect central complex and the neural basis of navigational strategies. Journal of Experimental Biology, 2019, 222, .	1.7	141
18	Editorial: The Insect Central Complex—From Sensory Coding to Directing Movement. Frontiers in Behavioral Neuroscience, 2018, 12, 156.	2.0	8

STANLEY HEINZE

#	Article	IF	CITATIONS
19	The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Current Biology, 2018, 28, 2160-2166.e5.	3.9	94
20	Principles of Insect Path Integration. Current Biology, 2018, 28, R1043-R1058.	3.9	145
21	Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. Journal of Comparative Neurology, 2017, 525, 1879-1908.	1.6	63
22	Neural Coding: Bumps on the Move. Current Biology, 2017, 27, R409-R412.	3.9	12
23	An Anatomically Constrained Model for Path Integration in the Bee Brain. Current Biology, 2017, 27, 3069-3085.e11.	3.9	290
24	Unraveling the neural basis of insect navigation. Current Opinion in Insect Science, 2017, 24, 58-67.	4.4	113
25	Editorial overview: Recent advances in insect neuroethology: from sensory processing to circuits controlling internal states. Current Opinion in Insect Science, 2017, 24, iv-vi.	4.4	0
26	Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Frontiers in Behavioral Neuroscience, 2017, 11, 158.	2.0	26
27	The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator. Frontiers in Behavioral Neuroscience, 2016, 10, 77.	2.0	80
28	Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Scientific Reports, 2016, 6, 26041.	3.3	72
29	Bogong moths. Current Biology, 2016, 26, R263-R265.	3.9	5
30	A clearer view of the insect brain—combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction. Frontiers in Neuroanatomy, 2015, 9, 121.	1.7	14
31	Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2015, 523, 1589-1607.	1.6	24
32	Neuroethology: Unweaving the Senses of Direction. Current Biology, 2015, 25, R1034-R1037.	3.9	14
33	Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly. , 2014, , 61-111.		34
34	Polarization Vision. , 2014, , 1-30.		2
35	Neurobiology: Jumping Spiders Getting On Board. Current Biology, 2014, 24, R1042-R1044.	3.9	1
36	Integration of polarization and chromatic cues in the insect sky compass. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 575-89.	1.6	104

STANLEY HEINZE

#	Article	IF	CITATIONS
37	Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. Journal of Comparative Neurology, 2013, 521, 267-298.	1.6	159
38	Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	1
39	Polarization Vision. , 2013, , 1-30.		3
40	Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. Journal of Comparative Neurology, 2012, 520, 1599-1628.	1.6	132
41	Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. Journal of Comparative Neurology, 2012, 520, Spc1-Spc1.	1.6	Ο
42	Unraveling navigational strategies in migratory insects. Current Opinion in Neurobiology, 2012, 22, 353-361.	4.2	58
43	Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies. Neuron, 2011, 69, 345-358.	8.1	227
44	Central neural coding of sky polarization in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 680-687.	4.0	218
45	Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex. Journal of Neuroscience, 2009, 29, 4911-4921.	3.6	102
46	Transformation of Polarized Light Information in the Central Complex of the Locust. Journal of Neuroscience, 2009, 29, 11783-11793.	3.6	105
47	The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Frontiers in Systems Neuroscience, 2009, 3, 21.	2.5	63
48	Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. Journal of Comparative Neurology, 2008, 511, 454-478.	1.6	144
49	Maplike Representation of Celestial <i>E</i> -Vector Orientations in the Brain of an Insect. Science, 2007, 315, 995-997.	12.6	335
50	Maplike representation of celestial E-vector orientations in the brain of an insect. E-Neuroforum, 2007, 13, 62-63.	0.1	3