Stanley Heinze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6293239/publications.pdf

Version: 2024-02-01

304743 289244 2,993 50 22 40 citations h-index g-index papers 61 61 61 1251 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Maplike Representation of Celestial $\langle i \rangle E \langle i \rangle$ -Vector Orientations in the Brain of an Insect. Science, 2007, 315, 995-997.	12.6	335
2	An Anatomically Constrained Model for Path Integration in the Bee Brain. Current Biology, 2017, 27, 3069-3085.e11.	3.9	290
3	Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies. Neuron, 2011, 69, 345-358.	8.1	227
4	Central neural coding of sky polarization in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 680-687.	4.0	218
5	Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. Journal of Comparative Neurology, 2013, 521, 267-298.	1.6	159
6	Principles of Insect Path Integration. Current Biology, 2018, 28, R1043-R1058.	3.9	145
7	Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. Journal of Comparative Neurology, 2008, 511, 454-478.	1.6	144
8	The insect central complex and the neural basis of navigational strategies. Journal of Experimental Biology, 2019, 222, .	1.7	141
9	Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. Journal of Comparative Neurology, 2012, 520, 1599-1628.	1.6	132
10	Unraveling the neural basis of insect navigation. Current Opinion in Insect Science, 2017, 24, 58-67.	4.4	113
11	Transformation of Polarized Light Information in the Central Complex of the Locust. Journal of Neuroscience, 2009, 29, 11783-11793.	3.6	105
12	Integration of polarization and chromatic cues in the insect sky compass. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 575-89.	1.6	104
13	Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex. Journal of Neuroscience, 2009, 29, 4911-4921.	3.6	102
14	The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Current Biology, 2018, 28, 2160-2166.e5.	3.9	94
15	The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator. Frontiers in Behavioral Neuroscience, 2016, 10, 77.	2.0	80
16	Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Scientific Reports, 2016, 6, 26041.	3.3	72
17	The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Frontiers in Systems Neuroscience, 2009, 3, 21.	2.5	63
18	Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. Journal of Comparative Neurology, 2017, 525, 1879-1908.	1.6	63

#	Article	IF	CITATIONS
19	Unraveling navigational strategies in migratory insects. Current Opinion in Neurobiology, 2012, 22, 353-361.	4.2	58
20	The head direction circuit of two insect species. ELife, 2020, 9, .	6.0	50
21	A projectome of the bumblebee central complex. ELife, 2021, 10, .	6.0	36
22	Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly., 2014, , 61-111.		34
23	The brain of a nocturnal migratory insect, the Australian Bogong moth. Journal of Comparative Neurology, 2020, 528, 1942-1963.	1.6	31
24	Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Frontiers in Behavioral Neuroscience, 2017, 11, 158.	2.0	26
25	Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust <i>Schistocerca gregaria</i>). Journal of Comparative Neurology, 2015, 523, 1589-1607.	1.6	24
26	A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. ELife, 2021, 10, .	6.0	21
27	A clearer view of the insect brain—combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction. Frontiers in Neuroanatomy, 2015, 9, 121.	1.7	14
28	Neuroethology: Unweaving the Senses of Direction. Current Biology, 2015, 25, R1034-R1037.	3.9	14
29	Neural Coding: Bumps on the Move. Current Biology, 2017, 27, R409-R412.	3.9	12
30	Vector navigation in walking bumblebees. Current Biology, 2022, 32, 2871-2883.e4.	3.9	11
31	A Novel Major Output Target for Pheromone-Sensitive Projection Neurons in Male Moths. Frontiers in Cellular Neuroscience, 2020, 14, 147.	3.7	9
32	Editorial: The Insect Central Complexâ€"From Sensory Coding to Directing Movement. Frontiers in Behavioral Neuroscience, 2018, 12, 156.	2.0	8
33	Three-Dimensional Atlases of Insect Brains. Neuromethods, 2020, , 73-124.	0.3	7
34	Visual Navigation: Ants Lose Track without Mushroom Bodies. Current Biology, 2020, 30, R984-R986.	3.9	6
35	Bogong moths. Current Biology, 2016, 26, R263-R265.	3.9	5
36	Implementing an Insect Brain Computational Circuit Using III–V Nanowire Components in a Single Shared Waveguide Optical Network. ACS Photonics, 2020, 7, 2787-2798.	6.6	5

#	Article	IF	CITATIONS
37	Maplike representation of celestial E-vector orientations in the brain of an insect. E-Neuroforum, 2007, 13, 62-63.	0.1	3
38	Polarization Vision. , 2013, , 1-30.		3
39	Mapping the fly's â€~brain in the brain'. ELife, 2021, 10, .	6.0	3
40	Polarization Vision., 2014, , 1-30.		2
41	Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	1
42	Neurobiology: Jumping Spiders Getting On Board. Current Biology, 2014, 24, R1042-R1044.	3.9	1
43	Stanley Heinze. Current Biology, 2019, 29, R268-R270.	3.9	1
44	Why flies look to the skies. ELife, 2021, 10, .	6.0	1
45	Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. Journal of Comparative Neurology, 2012, 520, Spc1-Spc1.	1.6	O
46	Editorial overview: Recent advances in insect neuroethology: from sensory processing to circuits controlling internal states. Current Opinion in Insect Science, 2017, 24, iv-vi.	4.4	0
47	Cover Image, Volume 528, Issue 11. Journal of Comparative Neurology, 2020, 528, C4.	1.6	O
48	Optoelectronic III-V nanowire implementation of a neural network in a shared waveguide. , 2020, , .		0
49	Fly navigation: Yet another ring. Current Biology, 2021, 31, R1381-R1383.	3.9	0
50	Polarization Vision. , 2022, , 2812-2838.		0