List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6292636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What is the Role of Individual Species within Bidirectional Electroactive Microbial Biofilms: A Case Study on <i>Desulfarculus baarsii</i> and <i>Desulfurivibrio alkaliphilus</i> . ChemElectroChem, 2022, 9, .	3.4	10
2	Self-assembled cauliflower-like pyrite-S, N co-doped graphene quantum dots as free-standing anode with high conductivity and biocompatibility for bioelectricity production. Fuel, 2021, 286, 119291.	6.4	20
3	Qualityâ€Indicatorâ€Based Preprocessing for the Distribution of Relaxation Times Method. ChemElectroChem, 2021, 8, 1167-1182.	3.4	5
4	Customizable design strategies for high-performance bioanodes in bioelectrochemical systems. IScience, 2021, 24, 102163.	4.1	20
5	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Crossâ€Laboratory Study. ChemSusChem, 2021, 14, 2267.	6.8	2
6	Direct and Indirect Electrooxidation of Glycerol to Valueâ€Added Products. ChemSusChem, 2021, 14, 5216-5225.	6.8	20
7	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Crossâ€Laboratory Study. ChemSusChem, 2021, 14, 2313-2330.	6.8	13
8	Bidirectional electroactive microbial biofilms and the role of biogenic sulfur in charge storage and release. IScience, 2021, 24, 102822.	4.1	16
9	On the Interpretation of Impedance Spectra of Largeâ€Format Lithiumâ€Ion Batteries and Its Application in Aging Studies. Energy Technology, 2020, 8, 1900279.	3.8	23
10	Impedance Spectroscopic Investigation of the Impact of Erroneous Cell Assembly on the Aging of Lithiumâ€ion Batteries. Energy Technology, 2020, 8, 1900288.	3.8	7
11	Evaluation of the membrane efficiency of both Nafion and sulfonated poly (ether ether ketone) using electrochemical membrane reactor toward desulfurization of a model diesel fuel. Chemical Engineering Research and Design, 2020, 153, 517-527.	5.6	6
12	The Limits of Threeâ€Dimensionality: Systematic Assessment of Effective Anode Macrostructure Dimensions for Mixedâ€Culture Electroactive Biofilms. ChemSusChem, 2020, 13, 582-589.	6.8	20
13	Optimal Geometric Parameters for 3D Electrodes in Bioelectrochemical Systems: A Systematic Approach. ChemSusChem, 2020, 13, 5119-5129.	6.8	4
14	Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater. Chemosensors, 2020, 8, 49.	3.6	1
15	Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy and Environmental Science, 2020, 13, 3102-3109.	30.8	23
16	Liquid–Liquid Equilibrium Data and Continuous Process Concept for the Electrosynthesis of Valeric Acid from Levulinic Acid. Frontiers in Energy Research, 2020, 8, .	2.3	6
17	Studying the Impact of Wall Shear Stress on the Development and Performance of Electrochemically Active Biofilms. ChemPlusChem, 2020, 85, 2298-2307.	2.8	4
18	Correlating theoretical boundary layer thickness to the power output of a microbial fuel cell with a complex anode geometry operated at varying flow rates. Journal of Power Sources, 2020, 470, 228428.	7.8	7

#	Article	IF	CITATIONS
19	Editorial: International Society for Microbial Electrochemistry and Technology: Outputs From the 2018 Regional Meetings. Frontiers in Energy Research, 2020, 8, .	2.3	0
20	Development and characterization of a fiber optical fluorescence sensor for the online monitoring of biofilms and their microenvironment. Engineering in Life Sciences, 2020, 20, 252-264.	3.6	7
21	Electrochemistry: connector of sciences. Journal of Solid State Electrochemistry, 2020, 24, 2179-2180.	2.5	3
22	Direct Access to the Optimal Regularization Parameter in Distribution of Relaxation Times Analysis. ChemElectroChem, 2020, 7, 3445-3458.	3.4	21
23	Developing Cheap and Massâ€Producible Graphiteâ€Filled Paper as an Anode Material for Microbial Electrochemical Technologies. ChemElectroChem, 2020, 7, 1851-1859.	3.4	7
24	Investigating Community Dynamics and Performance During Microbial Electrochemical Degradation of Whey. ChemElectroChem, 2020, 7, 989-997.	3.4	8
25	Aerobic microbial electrochemical technology based on the coexistence and interactions of aerobes and exoelectrogens for synergistic pollutant removal from wastewater. Environmental Science: Water Research and Technology, 2019, 5, 60-69.	2.4	8
26	GC/MS-screening analyses of valuable products in the aqueous phase from microwave-assisted hydrothermal processing of Lemna minor. Sustainable Chemistry and Pharmacy, 2019, 13, 100165.	3.3	3
27	Scratching the Surface—How Decisive Are Microscopic Surface Structures on Growth and Performance of Electrochemically Active Bacteria?. Frontiers in Energy Research, 2019, 7, .	2.3	17
28	Tapping Renewables: A New Dawn for Organic Electrosynthesis in Aqueous Reaction Media. ChemElectroChem, 2019, 6, 4126-4133.	3.4	33
29	Cultivating Electrochemically Active Biofilms at Continuously Changing Electrode Potentials. ChemElectroChem, 2019, 6, 2238-2247.	3.4	14
30	Long-Term Behavior of Defined Mixed Cultures of Geobacter sulfurreducens and Shewanella oneidensis in Bioelectrochemical Systems. Frontiers in Bioengineering and Biotechnology, 2019, 7, 60.	4.1	51
31	Integrated Valorization of Desalination Brine through NaOH Recovery: Opportunities and Challenges. Angewandte Chemie - International Edition, 2019, 58, 6502-6511.	13.8	30
32	Possibilities and Constraints of the Electrochemical Treatment of Thiophene on Low and High Oxidation Power Electrodes. Energy & Fuels, 2019, 33, 1901-1909.	5.1	8
33	Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nature Catalysis, 2019, 2, 106-113.	34.4	65
34	Capturing the Current-Overpotential Nonlinearity of Lithium-Ion Batteries by Nonlinear Electrochemical Impedance Spectroscopy (NLEIS) in Charge and Discharge Direction. Frontiers in Energy Research, 2019, 7, .	2.3	20
35	Finding the Optimal Regularization Parameter in Distribution of Relaxation Times Analysis. ChemElectroChem, 2019, 6, 6027-6037.	3.4	33

Microbial Electrolysis for Biohydrogen Production. , 2019, , 871-898.

#	Article	IF	CITATIONS
37	Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 2019, 233-234, 15-28.	10.1	122
38	A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells. Applied Energy, 2018, 211, 1089-1094.	10.1	62
39	Use of torsional resonators to monitor electroactive biofilms. Biosensors and Bioelectronics, 2018, 110, 225-232.	10.1	10
40	Towards selective electrochemical conversion of glycerol to 1,3-propanediol. RSC Advances, 2018, 8, 10818-10827.	3.6	15
41	A basic introduction into microbial fuel cells and microbial electrocatalysis. ChemTexts, 2018, 4, 1.	1.9	18
42	Concentration Pulse Method for the Investigation of Transformation Pathways in a Glycerol-Fed Bioelectrochemical System. Frontiers in Energy Research, 2018, 6, .	2.3	8
43	Substrate Crossover Effect and Performance Regeneration of the Biofouled Rotating Air-Cathode in Microbial Fuel Cell. Frontiers in Energy Research, 2018, 6, .	2.3	7
44	Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability. Journal of Power Sources, 2018, 398, 209-214.	7.8	28
45	A Study on Electrofuels in Aviation. Energies, 2018, 11, 392.	3.1	69
46	Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells. Journal of Power Sources, 2017, 356, 473-483.	7.8	12
47	The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1, .	30.2	385
48	Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms. Biosensors and Bioelectronics, 2017, 94, 74-80.	10.1	24
49	Hydroxyacetone: A Glycerolâ€Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes. ChemSusChem, 2017, 10, 3105-3110.	6.8	23
50	Electrochemistry for the Generation of Renewable Chemicals: Oneâ€Pot Electrochemical Deoxygenation of Xylose to δâ€Valerolactone. ChemSusChem, 2017, 10, 2015-2022.	6.8	12
51	eLatrine: Lessons Learned from the Development of a Low-Tech MFC Based on Cardboard Electrodes for the Treatment of Human Feces. Journal of the Electrochemical Society, 2017, 164, H3065-H3072.	2.9	20
52	Life Electric—Nature as a Blueprint for the Development of Microbial Electrochemical Technologies. Joule, 2017, 1, 244-252.	24.0	44
53	Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries. ChemSusChem, 2017, 10, 4215-4222.	6.8	11
54	Successive Conditioning in Complex Artificial Wastewater Increases the Performance of Flectrochemically Active Biofilms Treating Real Wastewater, ChemFlectroChem, 2017, 4, 3081-3090	3.4	20

#	Article	IF	CITATIONS
55	In Situ Autofluorescence Spectroelectrochemistry for the Study of Microbial Extracellular Electron Transfer. ChemElectroChem, 2017, 4, 2515-2519.	3.4	13
56	Electrodeâ€Resolved Monitoring of the Ageing of Largeâ€Scale Lithiumâ€Ion Cells by using Electrochemical Impedance Spectroscopy. ChemElectroChem, 2017, 4, 2921-2927.	3.4	22
57	Metal–Polymer Hybrid Architectures as Novel Anode Platform for Microbial Electrochemical Technologies. ChemSusChem, 2017, 10, 253-257.	6.8	36
58	Vertical 3D GaN Nanoarchitectures towards an Integrated Optoelectronic Biosensing Platform in Microbial Fuel Cells. Proceedings (mdpi), 2017, 1, .	0.2	1
59	An Anionic Non-Aqueous Single Substance Redox Flow Battery Based on Triiodide. International Journal of Electrochemical Science, 2016, 11, 9254-9264.	1.3	4
60	Development of a new Electrochemical Impedance Spectroscopy Approach for Monitoring the Solid Electrolyte Interphase Formation. Energy Technology, 2016, 4, 1509-1513.	3.8	40
61	Wie Mikroorganismen und Elektroden interagieren. Nachrichten Aus Der Chemie, 2016, 64, 732-737.	0.0	3
62	Application of Localized Electrochemical Impedance Spectroscopy to Lithiumâ€Ion Cathodes and in situ Monitoring of the Charging Process. Energy Technology, 2016, 4, 1514-1519.	3.8	6
63	Jenseits der Batterie - Elektrochemie in nachhaltiger Chemie und Biotechnologie. Chemie-Ingenieur-Technik, 2016, 88, 1253-1253.	0.8	0
64	"Unexpected―behaviour of the internal resistance of a vanadium redox flow battery. Journal of Power Sources, 2016, 306, 394-401.	7.8	5
65	Examining sludge production in bioelectrochemical systems treating domestic wastewater. Bioresource Technology, 2015, 198, 913-917.	9.6	42
66	Large Multipurpose Exceptionally Conductive Polymer Sponges Obtained by Efficient Wet hemical Metallization. Advanced Functional Materials, 2015, 25, 6182-6188.	14.9	35
67	Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy and Environmental Science, 2015, 8, 2048-2055.	30.8	299
68	Microfabricated, continuous-flow, microbial three-electrode cell for potential toxicity detection. Biochip Journal, 2015, 9, 27-34.	4.9	26
69	Immobilized Droplets. , 2015, , 225-295.		1
70	Hyphenated Techniques. , 2015, , 33-80.		1
71	Immobilized Particles. , 2015, , 81-224.		0
72	Electrochemistry for Biofuel Generation: Transformation of Fatty Acids and Triglycerides to Dieselâ€Like Olefin/Ether Mixtures and Olefins. ChemSusChem, 2015, 8, 886-893.	6.8	46

5

#	Article	IF	CITATIONS
73	Electrochemistry for the generation of renewable chemicals: electrochemical conversion of levulinic acid. RSC Advances, 2015, 5, 26634-26643.	3.6	69
74	Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 2015, 284, 252-257.	7.8	102
75	Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 2015, 5, 100790-100798.	3.6	41
76	Microbial electrochemistry and technology: terminology and classification. Energy and Environmental Science, 2015, 8, 513-519.	30.8	397
77	Electrochemistry of Immobilized Particles and Droplets. , 2015, , .		69
78	Optimal electrolyte flow distribution in hydrodynamic circuit of vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2015, 736, 117-126.	3.8	17
79	Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Frontiers in Microbiology, 2014, 5, 273.	3.5	67
80	Coupled mechanical and electrochemical characterization method for battery materials. , 2014, , .		1
81	Metabolic Efficiency of Geobacter sulfurreducens Growing on Anodes with Different Redox Potentials. Current Microbiology, 2014, 68, 763-768.	2.2	8
82	Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends in Biotechnology, 2014, 32, 645-655.	9.3	134
83	Biological Fuel Cells: Cardinal Advances and Critical Challenges. ChemElectroChem, 2014, 1, 1702-1704.	3.4	8
84	Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresource Technology, 2014, 163, 206-213.	9.6	77
85	Measurement, simulation and in situ regeneration of energy efficiency in vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2014, 728, 72-80.	3.8	21
86	Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy and Environmental Science, 2013, 6, 2925.	30.8	210
87	Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry, 2013, 93, 23-29.	4.6	122
88	Corrosion prevention of graphite collector in vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2013, 709, 93-98.	3.8	26
89	Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Advances, 2013, 3, 22253.	3.6	65
90	Selfâ€Assembling Enzyme Networks—A New Path towards Multistep Bioelectrocatalytic Systems. Angewandte Chemie - International Edition, 2013, 52, 3568-3569.	13.8	4

#	Article	IF	CITATIONS
91	Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs). Journal of Power Sources, 2013, 243, 499-507.	7.8	83
92	On-line controlled state of charge rebalancing in vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2013, 703, 29-37.	3.8	64
93	On the removal of sulfonamides using microbial bioelectrochemical systems. Electrochemistry Communications, 2013, 26, 77-80.	4.7	53
94	Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity. RSC Advances, 2013, 3, 11035.	3.6	63
95	Unraveling the Interfacial Electron Transfer Dynamics of Electroactive Microbial Biofilms Using Surfaceâ€Enhanced Raman Spectroscopy. ChemSusChem, 2013, 6, 487-492.	6.8	32
96	From the test-tube to the test-engine: assessing the suitability of prospective liquid biofuel compounds. RSC Advances, 2013, 3, 9594.	3.6	26
97	Microwave-assisted hydrothermal degradation of fructose and glucose in subcritical water. Biomass and Bioenergy, 2012, 39, 389-398.	5.7	72
98	Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane. Energy and Environmental Science, 2012, 5, 5231-5235.	30.8	108
99	Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2012, 126, 225-230.	20.2	138
100	Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy and Environmental Science, 2012, 5, 9769.	30.8	187
101	From In Vitro to In Vivo—Biofuel Cells Are Maturing. Angewandte Chemie - International Edition, 2012, 51, 7370-7372.	13.8	45
102	A Threeâ€Dimensionally Ordered Macroporous Carbon Derived From a Natural Resource as Anode for Microbial Bioelectrochemical Systems. ChemSusChem, 2012, 5, 1059-1063.	6.8	133
103	Editorial: Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!. ChemSusChem, 2012, 5, 959-959.	6.8	19
104	Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosensors and Bioelectronics, 2012, 34, 282-285.	10.1	53
105	Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy and Environmental Science, 2011, 4, 1265.	30.8	74
106	Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochemistry Communications, 2011, 13, 1026-1029.	4.7	81
107	Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresource Technology, 2011, 102, 9683-9690.	9.6	203
108	Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells. Bioresource Technology, 2011, 102, 10763-10766.	9.6	64

#	Article	IF	CITATIONS
109	Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1417.	30.8	289
110	Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year–old discovery. Journal of Solid State Electrochemistry, 2011, 15, 1481-1486.	2.5	71
111	Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry, 2011, 81, 74-80.	4.6	159
112	Enhanced Activity of Nonâ€Noble Metal Electrocatalysts for the Oxygen Reduction Reaction Using Low Temperature Plasma Treatment. Plasma Processes and Polymers, 2011, 8, 914-922.	3.0	14
113	Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 2011, 4, 566-579.	6.8	280
114	In Situ Spectroelectrochemical Investigation of Electrocatalytic Microbial Biofilms by Surfaceâ€Enhanced Resonance Raman Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 2625-2627.	13.8	114
115	Comments on "Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell―by Samrot etÂal., Int.ÂJ. Hydrogen Energy, 35 (15) 2010, 7723–7729. International Journal of Hydrogen Energy, 2011, 36, 9396-9397.	7.1	3
116	Keeping intermediates on the track: towards tailored metabolons for bioelectrocatalysis. Biofuels, 2010, 1, 677-680.	2.4	2
117	Toxicity Response of Electroactive Microbial Biofilms—A Decisive Feature for Potential Biosensor and Power Source Applications. ChemPhysChem, 2010, 11, 2834-2837.	2.1	91
118	Photomicrobial Solar and Fuel Cells. Electroanalysis, 2010, 22, 844-855.	2.9	65
119	The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 2167-2171.	10.1	154
120	Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosensors and Bioelectronics, 2010, 26, 803-808.	10.1	165
121	From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chemical Society Reviews, 2010, 39, 4433.	38.1	335
122	Selectivity versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems. ChemSusChem, 2009, 2, 921-926.	6.8	154
123	Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry, 2009, 75, 136-141.	4.6	76
124	Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. Journal of Power Sources, 2009, 193, 86-92.	7.8	54
125	Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 2009, 11, 2253-2256.	4.7	144
126	Electrocatalytic and corrosion behaviour of tungsten carbide in near-neutral pH electrolytes. Applied Catalysis B: Environmental, 2009, 87, 63-69.	20.2	54

#	Article	IF	CITATIONS
127	Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Applied Catalysis B: Environmental, 2009, 89, 455-458.	20.2	189
128	An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy and Environmental Science, 2009, 2, 96-99.	30.8	109
129	Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents. Biosensors and Bioelectronics, 2008, 24, 1012-1019.	10.1	76
130	From Wastewater to Hydrogen: Biorefineries Based on Microbial Fuel ell Technology. ChemSusChem, 2008, 1, 281-282.	6.8	28
131	Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosensors and Bioelectronics, 2008, 24, 1006-1011.	10.1	206
132	On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy and Environmental Science, 2008, 1, 144.	30.8	482
133	The Suitability of Monopolar and Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells. Environmental Science & Technology, 2008, 42, 1740-1746.	10.0	170
134	Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 2007, 9, 2619-2629.	2.8	781
135	Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Applied Catalysis B: Environmental, 2007, 74, 261-269.	20.2	121
136	Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology, 2006, 40, 5193-5199.	10.0	479
137	Microbial Fuel Cells: Methodology and Technologyâ€. Environmental Science & Technology, 2006, 40, 5181-5192.	10.0	4,962
138	Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochemistry Communications, 2006, 8, 869-873.	4.7	93
139	Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. Journal of Solid State Electrochemistry, 2006, 10, 872-878.	2.5	56
140	Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell. Angewandte Chemie - International Edition, 2006, 45, 6658-6661.	13.8	155
141	Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 2005, 7, 1405-1410.	4.7	466
142	Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Letters in Applied Microbiology, 2005, 41, 286-290.	2.2	78
143	Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Applied Microbiology and Biotechnology, 2005, 68, 753-756.	3.6	107
144	In Situ Electrooxidation of Photobiological Hydrogen in a Photobioelectrochemical Fuel Cell Based on Rhodobacter sphaeroides. Environmental Science & Technology, 2005, 39, 6328-6333.	10.0	106

#	Article	IF	CITATIONS
145	Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochemistry Communications, 2004, 6, 571-575.	4.7	171
146	Exploiting complex carbohydrates for microbial electricity generation ? a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004, 6, 955-958.	4.7	265
147	Title is missing!. Angewandte Chemie, 2003, 115, 2986-2989.	2.0	77
148	A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude. Angewandte Chemie - International Edition, 2003, 42, 2880-2883.	13.8	341
149	Bacterial batteries. Nature Biotechnology, 2003, 21, 1151-1152.	17.5	53
150	Electrochemical Analysis of Solids. A Review. Collection of Czechoslovak Chemical Communications, 2002, 67, 163-208.	1.0	200
151	Probing Thermodynamic Aspects of Electrochemically Driven Ion-Transfer Processes Across Liquid Liquid Interfaces:  Pure versus Diluted Redox Liquids. Journal of Physical Chemistry B, 2002, 106, 8697-8704.	2.6	57
152	Voltammetry of Electroactive Oil Droplets:  Electrochemically-Induced Ion Insertion, Expulsion and Reaction Processes at Microdroplets of N,N,Nâ€~,Nâ€~-Tetraalkyl-para- phenylenediamines (TRPD, R = n-Butyl,) Tj	ET ହ୍ରବ୍ ପ 0 0) r gB T /Overlo
153	Electrochemically Driven Ion Insertion Processes across Liquid Liquid Boundaries:  Neutral versus Ionic Redox Liquids. Journal of Physical Chemistry B, 2001, 105, 1344-1350.	2.6	68
154	Voltammetry of Electroactive Oil Droplets. Part II: Comparison of Experimental and Simulation Data for Coupled Ion and Electron Insertion Processes and Evidence for Microscale Convection. Electroanalysis, 2000, 12, 1017-1025.	2.9	60
155	The Wittig Reaction with Pyridylphosphoranes. European Journal of Organic Chemistry, 2000, 2000, 2601-2604.	2.4	16
156	lonic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64â^'/3â^' in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 2000, 493, 75-83.	3.8	126
157	Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. Journal of Solid State Electrochemistry, 2000, 4, 314-324.	2.5	140
158	The Solid-State Electrochemistry of Metal Octacyanomolybdates, Octacyanotungstates, and Hexacyanoferrates Explained on the Basis of Dissolution and Reprecipitation Reactions, Lattice Structures, and Crystallinities. Inorganic Chemistry, 2000, 39, 1006-1015.	4.0	58
159	Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New Journal of Chemistry, 2000, 24, 1009-1015.	2.8	513
160	The electrochemical response of radiation defects of non-conducting materials An electrochemical access to age determinations. Journal of Electroanalytical Chemistry, 1995, 385, 139-142.	3.8	31
161	Electrochemistry of Chromium(II) Hexacyanochromate(III) and Electrochemically Induced Isomerization of Solid Iron(II) Hexacyanochromate(III) Mechanically Immobilized on the Surface of a Graphite Electrode. Inorganic Chemistry, 1995, 34, 1711-1717.	4.0	51