Ian Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6292556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	3.9	39
2	Discovery and Characterization of a Cryptic Secondary Binding Site in the Molecular Chaperone HSP70. Molecules, 2022, 27, 817.	3.8	1
3	Genome-Protective Topoisomerase 2a-Dependent G2 Arrest Requires p53 in hTERT-Positive Cancer Cells. Cancer Research, 2022, 82, 1762-1773.	0.9	2
4	SimPLIT: Simplified Sample Preparation for Large-Scale Isobaric Tagging Proteomics. Journal of Proteome Research, 2022, 21, 1842-1856.	3.7	9
5	Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chemical Biology, 2021, 28, 1433-1445.e3.	5.2	13
6	CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells. Cancer Research, 2020, 80, 1735-1747.	0.9	38
7	Labelled chemical probes for demonstrating direct target engagement in living systems. Future Medicinal Chemistry, 2019, 11, 1195-1224.	2.3	10
8	A critical evaluation of the approaches to targeted protein degradation for drug discovery. Drug Discovery Today: Technologies, 2019, 31, 5-13.	4.0	37
9	Solution NMR assignment of the ARC4 domain of human tankyrase 2. Biomolecular NMR Assignments, 2019, 13, 255-260.	0.8	7
10	Binding to an Unusual Inactive Kinase Conformation by Highly Selective Inhibitors of Inositol-Requiring Enzyme 11± Kinase-Endoribonuclease. Journal of Medicinal Chemistry, 2019, 62, 2447-2465.	6.4	23
11	Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Scientific Reports, 2019, 9, 19130.	3.3	18
12	Demonstrating In-Cell Target Engagement Using a Pirin Protein Degradation Probe (CCT367766). Journal of Medicinal Chemistry, 2018, 61, 918-933.	6.4	81
13	A Mitsunobu reaction to functionalized cyclic and bicyclic N-arylamines. Tetrahedron Letters, 2018, 59, 238-242.	1.4	8
14	Chemical approaches to targeted protein degradation through modulation of the ubiquitin–proteasome pathway. Biochemical Journal, 2017, 474, 1127-1147.	3.7	122
15	Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach. Methods in Molecular Biology, 2017, 1608, 445-473.	0.9	12
16	Synthesis and Evaluation of a 2,11 embranoidâ€Inspired Library. Chemistry - A European Journal, 2016, 22, 5657-5664.	3.3	10
17	Multiparameter Lead Optimization to Give an Oral Checkpoint Kinase 1 (CHK1) Inhibitor Clinical Candidate: (<i>R</i>)-5-((4-((Morpholin-2-ylmethyl)amino)-5-(trifluoromethyl)pyridin-2-yl)amino)pyrazine-2-carbonitrile (CCT245737) Journal of Medicinal Chemistry, 2016, 59, 5221-5237	6.4	24
18	Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70. Journal of Medicinal Chemistry, 2016, 59, 4625-4636.	6.4	29

#	Article	IF	CITATIONS
19	Synthesis of a Riboseâ€Incorporating Medium Ring Scaffold via a Challenging Ringâ€Closing Metathesis Reaction. European Journal of Organic Chemistry, 2016, 2016, 4496-4507.	2.4	6
20	A fragment-based approach applied to a highly flexible target: Insights and challenges towards the inhibition of HSP70 isoforms. Scientific Reports, 2016, 6, 34701.	3.3	24
21	The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eμ-MYC driven B-cell lymphoma. Oncotarget, 2016, 7, 2329-2342.	1.8	56
22	An expedient synthesis of oxazepino and oxazocino quinazolines. Tetrahedron Letters, 2015, 56, 6478-6483.	1.4	13
23	Molecular mechanisms of human IRE1 activation through dimerization and ligand binding. Oncotarget, 2015, 6, 13019-13035.	1.8	49
24	Multiple autophosphorylations significantly enhance the endoribonuclease activity of human inositol requiring enzyme 11±. BMC Biochemistry, 2014, 15, 3.	4.4	17
25	Fragment growing to retain or alter the selectivity of anchored kinase hinge-binding fragments. MedChemComm, 2014, 5, 180-185.	3.4	8
26	Modern Cancer Drug Discovery. , 2014, , 3-53.		8
27	Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery. Molecules, 2014, 19, 17221-17255.	3.8	27
28	Synthesis and evaluation of heteroaryl substituted diazaspirocycles as scaffolds to probe the ATP-binding site of protein kinases. Bioorganic and Medicinal Chemistry, 2013, 21, 5707-5724.	3.0	16
29	Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opinion on Drug Discovery, 2013, 8, 621-640.	5.0	57
30	Identification of Autophosphorylation Inhibitors of the Inositol-Requiring Enzyme 1 Alpha (IRE1α) by High-Throughput Screening Using a DELFIA Assay. Journal of Biomolecular Screening, 2013, 18, 298-308.	2.6	13
31	Fragment-Based Screening Maps Inhibitor Interactions in the ATP-Binding Site of Checkpoint Kinase 2. PLoS ONE, 2013, 8, e65689.	2.5	23
32	CCT244747 Is a Novel Potent and Selective CHK1 Inhibitor with Oral Efficacy Alone and in Combination with Genotoxic Anticancer Drugs. Clinical Cancer Research, 2012, 18, 5650-5661.	7.0	84
33	Design and synthesis of 2(1H)-pyrazinones as inhibitors of protein kinases. Tetrahedron, 2012, 68, 9713-9728.	1.9	16
34	Macrocycles in new drug discovery. Future Medicinal Chemistry, 2012, 4, 1409-1438.	2.3	362
35	CCT241533 Is a Potent and Selective Inhibitor of CHK2 that Potentiates the Cytotoxicity of PARP Inhibitors. Cancer Research, 2011, 71, 463-472.	0.9	96
36	The 2,11-Cyclized Cembranoids: Cladiellins, Asbestinins, and Briarellins (Period 1998–2010). Journal of Natural Products, 2011, 74, 2318-2328.	3.0	38

#	Article	IF	CITATIONS
37	Anticancer therapy with checkpoint inhibitors: what, where and when?. Trends in Pharmacological Sciences, 2011, 32, 308-316.	8.7	187
38	Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO Journal, 2011, 30, 894-905.	7.8	201
39	Structure-Based Design of Potent and Selective 2-(Quinazolin-2-yl)phenol Inhibitors of Checkpoint Kinase 2. Journal of Medicinal Chemistry, 2011, 54, 580-590.	6.4	46
40	Design and evaluation of 3-aminopyrazolopyridinone kinase inhibitors inspired by the natural product indirubin. Bioorganic and Medicinal Chemistry, 2011, 19, 3569-3578.	3.0	14
41	Synthesis and reactivity of 3-amino-1H-pyrazolo[4,3-c]pyridin-4(5H)-ones: development of a novel kinase-focussed library. Tetrahedron, 2010, 66, 2843-2854.	1.9	24
42	Probing the Probes: Fitness Factors For Small Molecule Tools. Chemistry and Biology, 2010, 17, 561-577.	6.0	253
43	Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2. Bioorganic and Medicinal Chemistry, 2010, 18, 707-718.	3.0	50
44	Design and evaluation of 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines as inhibitors of checkpoint and other kinases. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4045-4049.	2.2	28
45	Identification by High-Throughput Screening of Viridin Analogs as Biochemical and Cell-Based Inhibitors of the Cell Cycle–Regulated Nek2 Kinase. Journal of Biomolecular Screening, 2010, 15, 918-927.	2.6	30
46	The Preclinical Pharmacology and Therapeutic Activity of the Novel CHK1 Inhibitor SAR-020106. Molecular Cancer Therapeutics, 2010, 9, 89-100.	4.1	77
47	Discovery of 4-Amino-1-(7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidin-4-yl)piperidine-4-carboxamides As Selective, Orally Active Inhibitors of Protein Kinase B (Akt). Journal of Medicinal Chemistry, 2010, 53, 2239-2249.	6.4	68
48	Aminopyrazine Inhibitors Binding to an Unusual Inactive Conformation of the Mitotic Kinase Nek2: SAR and Structural Characterization. Journal of Medicinal Chemistry, 2010, 53, 7682-7698.	6.4	63
49	Targeted Small-Molecule Inhibitors of Protein Kinase B as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 32-50.	1.7	24
50	Measuring and interpreting the selectivity of protein kinase inhibitors. Journal of Chemical Biology, 2009, 2, 131-151.	2.2	151
51	Identification of Inhibitors of Checkpoint Kinase 1 through Template Screening. Journal of Medicinal Chemistry, 2009, 52, 4810-4819.	6.4	36
52	Fragment-Based Discovery of Inhibitors of Protein Kinase B. Current Topics in Medicinal Chemistry, 2009, 9, 1705-1717.	2.1	11
53	4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. Journal of Medicinal Chemistry, 2008, 51, 196-218.	6.4	386
54	Identification of 4-(4-Aminopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidines as Selective Inhibitors of Protein Kinase B through Fragment Elaboration. Journal of Medicinal Chemistry, 2008, 51, 2147-2157.	6.4	93

#	Article	IF	CITATIONS
55	Modern cancer drug discovery: integrating targets, technologies and treatments. , 2008, , 3-38.		4
56	Rapid Evolution of 6-Phenylpurine Inhibitors of Protein Kinase B through Structure-Based Design. Journal of Medicinal Chemistry, 2007, 50, 2289-2292.	6.4	58
57	A Structural Comparison of Inhibitor Binding to PKB, PKA and PKA-PKB Chimera. Journal of Molecular Biology, 2007, 367, 882-894.	4.2	80
58	Divergent cyclisations of 2-(5-amino-4-carbamoyl-1H-pyrazol-3-yl)acetic acids with formyl and acetyl electrophiles. Tetrahedron, 2007, 63, 9627-9634.	1.9	14
59	Synthesis of 4-(cyclic dialkylamino)-7-azaindoles by microwave heating of 4-halo-7-azaindoles and cyclic secondary amines. Tetrahedron Letters, 2007, 48, 1527-1529.	1.4	20
60	CHK2 kinase: cancer susceptibility and cancer therapy – two sides of the same coin?. Nature Reviews Cancer, 2007, 7, 925-936.	28.4	266
61	Identification of Small-Molecule Inhibitors of Protein Kinase B (PKB/AKT) in an AlphaScreenâ"¢ High-Throughput Screen. Journal of Biomolecular Screening, 2006, 11, 822-827.	2.6	30
62	Design and Development of Signal Transduction Inhibitors for Cancer Treatment: Experience and Challenges with Kinase Targets. Current Signal Transduction Therapy, 2006, 1, 13-23.	0.5	35
63	New approaches to molecular cancer therapeutics. Nature Chemical Biology, 2006, 2, 689-700.	8.0	361
64	Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Bioorganic and Medicinal Chemistry, 2006, 14, 1255-1273.	3.0	40
65	Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Current Opinion in Pharmacology, 2005, 5, 366-373.	3.5	195